Chae Wookil, Earmme Taeshik
Department of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea.
ACS Omega. 2025 Aug 20;10(34):39012-39021. doi: 10.1021/acsomega.5c05199. eCollection 2025 Sep 2.
Commercial lithium-ion batteries using organic solvent-based liquid electrolytes (LEs) face safety issues, including risks of fire and explosion. As a safer alternative, solid-state electrolytes are being extensively explored to replace these organic solvent-based LEs. Among various solid electrolyte options, polymer electrolytes offer advantages such as flexibility and ease of processing. However, they present challenges like low ionic conductivity at room temperature and reduced stability at elevated temperatures compared with other solid electrolytes. In this study, ionic liquid-based composite polymer electrolytes (CPEs) with exceptional thermal stability are synthesized via in situ polymerization. The in situ polymerized CPEs exhibit high ionic conductivity, reaching up to 1.38 mS cm at 25 °C, and show improved interfacial contact with the electrode. These CPEs demonstrate robust thermal stability, withstanding thermal decomposition at 350 °C, and maintaining nearly the same initial cell capacity, even after being stored at elevated temperatures above 120 °C. The cell using CPEs also had a broad electrochemical stability window of 5 V, making it suitable for high-voltage electrode applications. Additionally, CPEs showed a high lithium-ion transference number ( = 0.5), and the NCM 811/CPE/Li cell showed a substantial discharge capacity of 210 mA h g at 0.1 C at 25 °C. Furthermore, the battery cell retained a 66% capacity after 100 cycles at a 0.3 C-rate compared to the initial value. The results suggest that the developed CPE has promising thermal stability, cell performance, and cycle life for future applications in lithium-ion rechargeable batteries.
使用有机溶剂基液体电解质(LEs)的商用锂离子电池面临安全问题,包括火灾和爆炸风险。作为一种更安全的替代方案,人们正在广泛探索固态电解质以取代这些有机溶剂基LEs。在各种固态电解质选项中,聚合物电解质具有诸如柔韧性和易于加工等优点。然而,与其他固态电解质相比,它们存在室温下离子电导率低以及在高温下稳定性降低等挑战。在本研究中,通过原位聚合合成了具有优异热稳定性的离子液体基复合聚合物电解质(CPEs)。原位聚合的CPEs表现出高离子电导率,在25℃时高达1.38 mS cm,并且与电极的界面接触得到改善。这些CPEs表现出强大的热稳定性,在350℃下能经受热分解,即使在120℃以上的高温下储存后,仍保持几乎相同的初始电池容量。使用CPEs的电池还具有5 V的宽电化学稳定性窗口,使其适用于高压电极应用。此外,CPEs显示出高锂离子迁移数( = 0.5),并且NCM 811/CPE/Li电池在25℃、0.1 C下表现出210 mA h g的可观放电容量。此外,与初始值相比,电池在0.3 C倍率下循环100次后仍保留66%的容量。结果表明,所开发的CPE在锂离子可充电电池的未来应用中具有良好的热稳定性、电池性能和循环寿命。