Liu Shuailei, Liu Wenyi, Ba Deliang, Zhao Yongzhi, Ye Yihua, Li Yuanyuan, Liu Jinping
School of Chemistry, Chemical Engineering and Life Science, and, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China.
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
Adv Mater. 2023 Jan;35(2):e2110423. doi: 10.1002/adma.202110423. Epub 2022 Nov 27.
Composite polymer electrolytes (CPEs) utilizing fillers as the promoting component bridge the gap between solid polymer electrolytes and inorganic solid electrolytes. The integration of fillers into the polymer matrices is demonstrated as a prevailing strategy to enhance Li-ion transport and assist in constructing Li -conducting electrode-electrolyte interface layer, which addresses the two key barriers of solid-state lithium batteries (SSLBs): low ionic conductivity of electrolyte and high interfacial impedance. Recent review articles have largely focused on the performance of a broad spectrum of CPEs and the general effects of fillers on SSLBs device. Recognizing this, in this review, after briefly presenting the categories of fillers (traditional and emerged) and the promoted ionic conducting mechanisms in CPEs, the progress in the interfacial structure design principle, with the emphasis on the crucial influence of filler size, concentration, and hybridization strategies on filler-polymer interface that is the most critical to Li-ion transport is assessed. The latest exciting advances on filler-enabled in situ generation of a Li -conductive layer at the electrode-electrolyte interface to greatly reduce the interfacial impedance are further elaborated. Finally, this review discusses the challenges to be addressed, outlines research directions, and provides a future vision for developing advanced CPEs for high-performing SSLBs.
利用填料作为促进成分的复合聚合物电解质(CPEs)弥合了固体聚合物电解质和无机固体电解质之间的差距。将填料整合到聚合物基体中是一种普遍采用的策略,用于增强锂离子传输并协助构建锂导电电极 - 电解质界面层,这解决了固态锂电池(SSLBs)的两个关键障碍:电解质的低离子电导率和高界面阻抗。最近的综述文章主要关注了广泛的CPEs的性能以及填料对SSLBs器件的一般影响。认识到这一点,在本综述中,在简要介绍填料的类别(传统填料和新型填料)以及CPEs中促进离子传导的机制之后,评估了界面结构设计原则的进展,重点强调了填料尺寸、浓度和杂化策略对锂离子传输最为关键的填料 - 聚合物界面的重要影响。进一步阐述了在电极 - 电解质界面通过填料原位生成锂导电层以大幅降低界面阻抗的最新令人兴奋的进展。最后,本综述讨论了有待解决的挑战,概述了研究方向,并为开发用于高性能SSLBs的先进CPEs提供了未来展望。