Astuti Cindy Cahyaning, Otok Bambang Widjanarko, Andari Shofi
Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia.
Faculty of Psychology and Education, Universitas Muhammadiyah Sidoarjo, Sidoarjo 61215, Indonesia.
MethodsX. 2025 Aug 18;15:103570. doi: 10.1016/j.mex.2025.103570. eCollection 2025 Dec.
This study proposes a new method in PLS SEM segmentation, namely PLS SEM Kernel K-Means Clustering (PLS SEM KKC). Segmentation is conducted to overcome one of the main limitations of PLS SEM modeling: unobserved heterogeneity. Previous studies on segmentation in PLS SEM have been performed using a linear clustering method. Segmentation is carried out based on the residual values of measurement and structural models from global PLS SEM, where the characteristics of the residuals are non-linear; thus, the segmentation process requires non-linear segmentation. This study's primary contribution is integrating kernel-based clustering into PLS SEM segmentation. The method effectively addresses unobserved heterogeneity by capturing non-linear residual patterns, leading to more accurate models. The empirical results show that the PLS SEM KKC method significantly improves model accuracy, with R² increasing from 51.1 % (global model) to 93.9 % ( = 2) and 97.5 % ( = 3) in segmented clusters. The increase in local R² confirms overcoming unobserved heterogeneity by grouping observations with similar patterns into homogeneous segments, improving model accuracy. • This study recommends a new method in PLS SEM segmentation. • PLS SEM KKC effectively captures non-linear residual patterns to address unobserved heterogeneity and improve model accuracy.
本研究提出了一种偏最小二乘结构方程模型(PLS SEM)分割的新方法,即偏最小二乘结构方程模型核K均值聚类(PLS SEM KKC)。进行分割是为了克服PLS SEM建模的一个主要局限性:未观察到的异质性。以往关于PLS SEM分割的研究使用的是线性聚类方法。分割是基于全局PLS SEM的测量模型和结构模型的残差值进行的,而残差的特征是非线性的;因此,分割过程需要非线性分割。本研究的主要贡献是将基于核的聚类方法集成到PLS SEM分割中。该方法通过捕捉非线性残差模式有效地解决了未观察到的异质性问题,从而得到更准确的模型。实证结果表明,PLS SEM KKC方法显著提高了模型精度,在分割后的聚类中,R²从51.1%(全局模型)提高到93.9%( = 2)和97.5%( = 3)。局部R²的增加证实了通过将具有相似模式的观测值分组到同质段中来克服未观察到的异质性,从而提高了模型精度。• 本研究推荐了一种PLS SEM分割的新方法。• PLS SEM KKC有效地捕捉非线性残差模式,以解决未观察到的异质性问题并提高模型精度。