Huang Zhengang, Tang Yuanping, Zhou Jianyu, Xu Dongliang, Lin Xiaokun, Cheng Ming, Wang Jianguang, Zhao Qinan, He Jianning, Gao Xiaoxiao, Zhao Jinshan, Li Hegang
Qingdao Agricultural University, Qingdao, China.
Qingdao Institute of Animal Husbandry and Veterinary Medicine, Qingdao, China.
Front Genet. 2025 Aug 22;16:1650836. doi: 10.3389/fgene.2025.1650836. eCollection 2025.
Identifying genetic markers associated with economically important traits in dairy goats helps enhance breeding efficiency, thereby increasing industry value. However, the potential genetic structure of key economic traits in dairy goats is still largely unknown.
This study used three genome-wide association study (GWAS) models (GLM, MLM, FarmCPU) to analyze dairy goat milk production traits (milk yield, fat percentage, protein percentage, lactose percentage, ash percentage, total dry matter, and somatic cell count). The goal was to identify SNPs and positional and functional candidate genes significantly associated with these traits.
The GWAS analysis results identified a total of 242 significant SNPs. Among these, 45 SNPs exhibited genome-wide significance, while 197 SNPs demonstrated suggestive associations, corresponding to 99 positional candidate genes within a 50 kb upstream and downstream range. 15 significant SNP loci were consistently identified across all three models, corresponding to 18 candidate genes.The integrated analysis of three models detected 2, 19, 17, 4, 115, 23, and 62 significant SNPs associated with milk yield, ash percentage, protein percentage, lactose percentage, somatic cell count, fat percentage, and total dry matter percentage, respectively. Correspondingly, 6, 24, 9, 12, 37, 14, and 30 candidate genes were identified for these traits. Additionally, several new candidate genes related to milk production traits were proposed (LCORL, TNFRSF1A, VWF, SPATA6, MAN1C1, MASP1, BRCA2).
In summary, the results of this study provide an important reference for further exploration of the genetic mechanisms underlying dairy goat milk production traits and the development of molecular breeding markers.
识别与奶山羊经济重要性状相关的遗传标记有助于提高育种效率,从而增加产业价值。然而,奶山羊关键经济性状的潜在遗传结构仍 largely unknown。
本研究使用三种全基因组关联研究(GWAS)模型(GLM、MLM、FarmCPU)分析奶山羊产奶性状(产奶量、脂肪百分比、蛋白质百分比、乳糖百分比、灰分百分比、总干物质和体细胞计数)。目的是识别与这些性状显著相关的单核苷酸多态性(SNPs)以及位置和功能候选基因。
GWAS分析结果共鉴定出242个显著的SNPs。其中,45个SNPs具有全基因组显著性,197个SNPs显示出提示性关联,对应于50 kb上下游范围内的99个位置候选基因。在所有三个模型中一致鉴定出15个显著的SNP位点,对应于18个候选基因。三种模型的综合分析分别检测到与产奶量、灰分百分比、蛋白质百分比、乳糖百分比、体细胞计数、脂肪百分比和总干物质百分比相关的2、19、17、4、115、23和62个显著SNPs。相应地,为这些性状鉴定出6、24、9、12、37、14和30个候选基因。此外,还提出了几个与产奶性状相关的新候选基因(LCORL、TNFRSF1A、VWF、SPATA6、MAN1C1、MASP1、BRCA2)。
总之,本研究结果为进一步探索奶山羊产奶性状的遗传机制和分子育种标记的开发提供了重要参考。