Suppr超能文献

MCGS:用于稀疏视图3D高斯辐射场的多视图一致性增强

MCGS: Multiview Consistency Enhancement for Sparse-View 3D Gaussian Radiance Fields.

作者信息

Xiao Yuru, Zhai Deming, Zhao Wenbo, Jiang Kui, Jiang Junjun, Liu Xianming

出版信息

IEEE Trans Pattern Anal Mach Intell. 2025 Sep 8;PP. doi: 10.1109/TPAMI.2025.3607103.

Abstract

Radiance fields represented by 3D Gaussians excel at synthesizing novel views, offering both high training efficiency and fast rendering. However, with sparse input views, the lack of multi-view consistency constraints results in poorly initialized Gaussians and unreliable heuristics for optimization, leading to suboptimal performance. Existing methods often incorporate depth priors from dense estimation networks but overlook the inherent multi-view consistency in input images. Additionally, they rely on dense initialization, which limits the efficiency of scene representation. To overcome these challenges, we propose a view synthesis framework based on 3D Gaussian Splatting, named MCGS, enabling photorealistic scene reconstruction from sparse views. The key innovations of MCGS in enhancing multi-view consistency are as follows: i) We leverage matching priors from a sparse matcher to initialize Gaussians primarily on textured regions, while low-texture areas are populated with randomly distributed Gaussians. This yields a compact yet sufficient set of initial Gaussians. ii) We propose a multi-view consistency-guided progressive pruning strategy to dynamically eliminate inconsistent Gaussians. This approach confines their optimization to a consistency-constrained space, which ensures robust and coherent scene reconstruction. These strategies enhance robustness to sparse views, accelerate rendering, and reduce memory consumption, making MCGS a practical framework for 3D Gaussian Splatting.

摘要

由三维高斯分布表示的辐射场在合成新视图方面表现出色,具有高训练效率和快速渲染的特点。然而,对于稀疏输入视图,由于缺乏多视图一致性约束,导致高斯分布初始化不佳以及优化的启发式方法不可靠,从而导致性能次优。现有方法通常纳入来自密集估计网络的深度先验,但忽略了输入图像中固有的多视图一致性。此外,它们依赖于密集初始化,这限制了场景表示的效率。为了克服这些挑战,我们提出了一种基于三维高斯平铺的视图合成框架,名为MCGS,能够从稀疏视图中进行逼真的场景重建。MCGS在增强多视图一致性方面的关键创新如下:i)我们利用来自稀疏匹配器的匹配先验,主要在纹理区域初始化高斯分布,而低纹理区域则用随机分布的高斯分布填充。这产生了一组紧凑但足够的初始高斯分布。ii)我们提出了一种多视图一致性引导的渐进式修剪策略,以动态消除不一致的高斯分布。这种方法将它们的优化限制在一致性约束的空间内,从而确保稳健且连贯的场景重建。这些策略增强了对稀疏视图的鲁棒性,加速了渲染,并减少了内存消耗,使MCGS成为三维高斯平铺的实用框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验