Moran F, Goldbeter A
Biophys Chem. 1985 Nov;23(1-2):71-7. doi: 10.1016/0301-4622(85)80065-x.
We analyze in a biochemical model the phenomenon of excitability in which suprathreshold perturbations of a stable steady state are amplified in a pulsatory manner. The two-variable model is that of an autocatalytic enzyme reaction with recycling of product into the substrate. This model was previously studied for the coexistence between two stable periodic regimes (birhythmicity). We show that the multiplicity of dynamic behavioral modes extends to the phenomenon of excitability. Whereas excitable behavior is generally characterized by a single threshold for excitation, two distinct thresholds may coexist in this model. Moreover, in these conditions, two different plateaux are obtained for the response amplitude when the stimulus is gradually increased. By means of phase plane analysis we explain the origin of multiple thresholds for excitability and predict the conditions for their occurrence. Implications of the phenomenon for excitable cells, in particular for neurons, are discussed.