Suppr超能文献

SAMCell:基于“分割一切”模型的通用无标记生物细胞分割方法

SAMCell: Generalized label-free biological cell segmentation with segment anything.

作者信息

VandeLoo Alexandra Dunnum, Malta Nathan J, Sanganeriya Saahil, Aponte Emilio, van Zyl Caitlin, Xu Danfei, Forest Craig

机构信息

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America.

School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, United States of America.

出版信息

PLoS One. 2025 Sep 8;20(9):e0319532. doi: 10.1371/journal.pone.0319532. eCollection 2025.

Abstract

BACKGROUND

When analyzing cells in culture, assessing cell morphology (shape), confluency (density), and growth patterns are necessary for understanding cell health. These parameters are generally obtained by a skilled biologist inspecting light microscope images, but this can become very laborious for high-throughput applications. One way to speed up this process is by automating cell segmentation. Cell segmentation is the task of drawing a separate boundary around each cell in a microscope image. This task is made difficult by vague cell boundaries and the transparent nature of cells. Many techniques for automatic cell segmentation exist, but these methods often require annotated datasets, model retraining, and associated technical expertise.

RESULTS

We present SAMCell, a modified version of Meta's Segment Anything Model (SAM) trained on an existing large-scale dataset of microscopy images containing varying cell types and confluency. Our approach works on a wide range of microscopy images, including cell types not seen in training and on images taken by a different microscope. We also present a user-friendly UI that reduces the technical expertise needed for this automated microscopy technique.

CONCLUSIONS

Using SAMCell, biologists can quickly and automatically obtain cell segmentation results of higher quality than previous methods. Further, these results can be obtained through our custom Graphical User Interface, thus decreasing the human labor required in cell culturing.

摘要

背景

在分析培养中的细胞时,评估细胞形态(形状)、汇合度(密度)和生长模式对于了解细胞健康状况至关重要。这些参数通常由熟练的生物学家通过检查光学显微镜图像来获取,但对于高通量应用而言,这可能会变得非常繁琐。加快这一过程的一种方法是实现细胞分割自动化。细胞分割是在显微镜图像中为每个细胞绘制单独边界的任务。由于细胞边界模糊和细胞的透明性质,这项任务变得困难。存在许多用于自动细胞分割的技术,但这些方法通常需要带注释的数据集、模型重新训练以及相关的技术专长。

结果

我们展示了SAMCell,它是Meta的Segment Anything Model(SAM)的修改版本,在包含不同细胞类型和汇合度的现有大规模显微镜图像数据集上进行了训练。我们的方法适用于广泛的显微镜图像,包括训练中未见过的细胞类型以及由不同显微镜拍摄的图像。我们还展示了一个用户友好的界面,减少了这种自动化显微镜技术所需的技术专长。

结论

使用SAMCell,生物学家可以快速自动地获得比以前方法质量更高的细胞分割结果。此外,这些结果可以通过我们定制的图形用户界面获得,从而减少细胞培养所需的人力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8905/12416835/824b5fad8bd7/pone.0319532.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验