Zamo Francis C Djoumessi, Colliaux Anthony, Blot-Lafond Valérie, Moyo Ndontchueng, Njeh Christopher F
Centre Clinical Soyaux, Centre de Radiothérapie Angouleme, Saint Michel, France.
Centre de Physique Atomique Moléculaire et Optique, University of DOUALA, Douala, Cameroun.
J Appl Clin Med Phys. 2025 Sep;26(9):e70251. doi: 10.1002/acm2.70251.
Modern radiation therapy for breast cancer has significantly advanced with the adoption of volumetric modulated arc therapy (VMAT), offering enhanced precision and improved treatment efficiency.
To ensure the accuracy and precision of such complex treatments, a robust patient-specific quality assurance (PSQA) protocol is essential. This study investigates the potential of machine learning (ML) models to predict gamma passing rates (GPR), a key metric in PSQA.
A dataset comprising 863 VMAT plans was used to develop and compare seven ML models: Histogram-based gradient boosting regressor, random forest regressor, extra trees regressor, gradient boosting regressor, linear regression, AdaBoost regressor, and Multi-layer perceptron regressor. These models incorporated anatomical, dosimetric, and plan complexity features.
Among the evaluated models, the extra trees regressor (ETR), random forest regressor (RFR), and gradient boosting regressor (GBR) demonstrated the best performance, achieving mean absolute errors (MAEs) of 0.51%, 0.52%, and 0.51%, and mean squared errors (MSEs) of 0.0051%, 0.0051%, and 0.0052%, respectively, on the validation dataset.
This study highlights the promise of ML-based approaches in streamlining PSQA processes, thereby supporting the quality assurance of breast cancer treatments using VMAT.
随着容积调强弧形放疗(VMAT)的采用,现代乳腺癌放射治疗取得了显著进展,提高了治疗精度和效率。
为确保此类复杂治疗的准确性和精确性,稳健的患者特异性质量保证(PSQA)方案至关重要。本研究调查了机器学习(ML)模型预测伽马通过率(GPR)的潜力,GPR是PSQA中的一个关键指标。
使用包含863个VMAT计划的数据集来开发和比较七个ML模型:基于直方图的梯度提升回归器、随机森林回归器、极端随机树回归器、梯度提升回归器、线性回归、AdaBoost回归器和多层感知器回归器。这些模型纳入了解剖学、剂量学和计划复杂性特征。
在评估的模型中,极端随机树回归器(ETR)、随机森林回归器(RFR)和梯度提升回归器(GBR)表现最佳,在验证数据集上的平均绝对误差(MAE)分别为0.51%、0.52%和0.51%,平均平方误差(MSE)分别为0.0051%、0.0051%和0.0052%。
本研究突出了基于ML方法在简化PSQA流程方面的前景,从而支持使用VMAT的乳腺癌治疗的质量保证。