Sánchez-Herrero Sergio, Calvet Liñan Laura
Department of Computer Science, Multimedia and Telecommunication, Universitat Oberta de Catalunya, Barcelona, 08018, Spain.
Department of Telecommunications & Systems Engineering, Universitat Autònoma de Barcelona, Sabadell, 08202, Spain.
Adv Pharm Bull. 2025 Jun 3;15(2):467-473. doi: 10.34172/apb.025.43852. eCollection 2025 Jul.
This study explores the potential of generative AI models to aid experts in developing scripts for pharmacokinetic (PK) models, with a focus on constructing a two-compartment population PK model using data from Hosseini et al.
Generative AI tools ChatGPT v3.5, Gemini v2.0 Flash and Microsoft Copilot free could help PK professionals- even those without programming experience-learn the programming languages and skills needed for PK modeling. To evaluate these free AI tools, PK models were created in R Studio, covering key tasks in pharmacometrics and clinical pharmacology, including model descriptions, input requirements, results, and code generation, with a focus on reproducibility.
ChatGPT demonstrated superior performance compared to Copilot and Gemini, highlighting strong foundational knowledge, advanced concepts, and practical skills, including PK code structure and syntax. Validation indicated high accuracy in estimated and simulated plots, with minimal differences in clearance (Cl) and volume of distribution (V c and V p) compared to reference values. The metrics showed absolute fractional error (AFE), absolute average fractional error (AAFE), and mean percentage error (MPE) values of 0.99, 1.14, and -1.85, respectively.
These results show that generative AI can effectively extract PK data from literature, build population PK models in R, and create interactive Shiny apps for visualization, with expert support.
本研究探讨生成式人工智能模型在协助专家制定药代动力学(PK)模型脚本方面的潜力,重点是利用侯赛尼等人的数据构建二室群体PK模型。
生成式人工智能工具ChatGPT v3.5、Gemini v2.0 Flash和Microsoft Copilot免费版可以帮助PK专业人员——即使是那些没有编程经验的人员——学习PK建模所需的编程语言和技能。为了评估这些免费人工智能工具,在R Studio中创建了PK模型,涵盖了药物计量学和临床药理学的关键任务,包括模型描述、输入要求、结果和代码生成,重点是可重复性。
与Copilot和Gemini相比,ChatGPT表现出卓越的性能,突出了扎实的基础知识、先进的概念和实践技能,包括PK代码结构和语法。验证表明,估计图和模拟图的准确性很高,与参考值相比,清除率(Cl)和分布容积(V c和V p)的差异最小。这些指标显示绝对分数误差(AFE)、绝对平均分数误差(AAFE)和平均百分比误差(MPE)值分别为0.99、1.14和-1.85。
这些结果表明,在专家的支持下,生成式人工智能可以有效地从文献中提取PK数据,在R中建立群体PK模型,并创建交互式Shiny应用程序进行可视化。