Hu Xiaoyan, Zhan Yuting, Wang Jinying
ElCU, Shaoxing Second Hospital, Shaoxing City, Zhejiang Province, People's Republic of China.
Department of Psychology, School of Education and Teaching, Ningxia University, Yinchuan City, Ningxia Province, People's Republic of China.
Psychol Res Behav Manag. 2025 Sep 2;18:1853-1870. doi: 10.2147/PRBM.S553199. eCollection 2025.
Sleep quality has emerged as a critical public health concern, yet our understanding of how multiple determinants interact to influence sleep outcomes remains limited. This study employed partial correlation network analysis to examine the hierarchical structure of sleep quality determinants among Chinese adults.
We investigated the interrelationships among nine key factors: daily activity rhythm, social interaction frequency, work-life balance, light exposure, physical activity level, time control perception, shift work, weekend catch-up sleep, and sleep quality using the extended Bayesian Information Criterion (EBIC) glasso model. The study included 8,127 Chinese adults (51.0% female, mean age = 32.7 years).
Results revealed that 79.9% of sleep quality variance could be explained by surrounding variables in the network. Time control perception emerged as a proximal factor, demonstrating the highest centrality ( = 1.85, = 1.92, = 1.88) and strongest connections to sleep quality. Behavioral factors (physical activity level, shift work, work-life balance) functioned as intermediate mechanisms, while environmental and temporal patterns (light exposure, weekend catch-up sleep, social interaction frequency, daily activity rhythm) operated as distal influences. Network stability analysis showed robust estimation precision (CS coefficients > 0.70 for all centrality measures).
These findings advance our theoretical understanding of sleep quality as embedded within a dynamic network of interacting factors and provide empirical support for targeted interventions focusing on time control perception and behavioral mediators to improve sleep outcomes. The network perspective offers novel insights for developing effective, hierarchically structured approaches to sleep quality enhancement in contemporary society.
睡眠质量已成为一个关键的公共卫生问题,但我们对多种决定因素如何相互作用以影响睡眠结果的理解仍然有限。本研究采用偏相关网络分析来检验中国成年人睡眠质量决定因素的层次结构。
我们使用扩展贝叶斯信息准则(EBIC)玻璃模型研究了九个关键因素之间的相互关系:日常活动节奏、社交互动频率、工作与生活平衡、光照暴露、身体活动水平、时间控制感知、轮班工作、周末补觉和睡眠质量。该研究纳入了8127名中国成年人(女性占51.0%,平均年龄 = 32.7岁)。
结果显示,网络中的周围变量可以解释79.9%的睡眠质量方差。时间控制感知成为一个近端因素,显示出最高的中心性( = 1.85, = 1.92, = 1.88)以及与睡眠质量最强的联系。行为因素(身体活动水平、轮班工作、工作与生活平衡)起到中间机制的作用,而环境和时间模式(光照暴露、周末补觉、社交互动频率、日常活动节奏)则作为远端影响因素。网络稳定性分析显示出稳健的估计精度(所有中心性测量的CS系数>0.70)。
这些发现推进了我们对睡眠质量作为一个嵌入在相互作用因素动态网络中的理论理解,并为聚焦于时间控制感知和行为调节因素以改善睡眠结果的针对性干预提供了实证支持。网络视角为当代社会开发有效、层次结构化的睡眠质量提升方法提供了新的见解。