Jurado Carlos A, Abuhammoud Salahaldeen, Green Austin, Afrashtehfar Kelvin I, Rojas-Rueda Silvia, Alhotan Abdulaziz, Floriani Franciele
Division of Operative Dentistry, Department of General Dentistry, The University of Tennessee Health Sciences Center College of Dentistry, Memphis 38103, Tennessee, USA.
Ponce Health Sciences University School of Dental Medicine, Ponce 00716, Puerto Rico.
Int J Dent. 2025 Aug 31;2025:7488948. doi: 10.1155/ijod/7488948. eCollection 2025.
This study investigates light transmission through five types of computer-aided design/computer-aided manufacturing (CAD/CAM) lithium disilicate ceramics, varying in thickness (0.50, 1.00, and 1.50 mm). A total of 150 specimens (10 per group) were fabricated using both traditional and novel ceramic materials: E.max CAD (traditional), n!ce Straumann and LiSi Block GC (fully-crystallized), and Amber Mill and Cerec Tessera (precrystallized). After polishing, light transmission was measured using a curing radiometer and surface microstructures were examined with scanning electron microscopy (SEM). The data were analyzed using two-way analysis of variance (ANOVA) with Tukey's post hoc tests. Results revealed that light intensity decreased as the ceramic thickness increased, regardless of the material type. Amber Mill (0.50 mm) exhibited the highest light intensity at 537 mW/cm, followed by E.max CAD (475 mW/cm) and n!ce Straumann (470 mW/cm). In contrast, LiSi Block GC (1.50 mm) showed no light transmission (0 mW/cm), with Cerec Tessera (60 mW/cm) and E.max CAD (175 mW/cm) also exhibiting low transmission at 1.50 mm. SEM analysis identified structural differences among the materials. These findings suggest that both the composition and thickness of CAD/CAM lithium disilicate ceramics significantly impact light transmission. Results revealed that material composition and thickness significantly influenced light transmission values, underscoring the importance of selecting appropriate ceramic type and thickness to optimize polymerization during light-cured resin cementation in clinical practice.
本研究调查了五种不同厚度(0.50、1.00和1.50毫米)的计算机辅助设计/计算机辅助制造(CAD/CAM)二硅酸锂陶瓷的透光率。使用传统和新型陶瓷材料共制作了150个样本(每组10个):E.max CAD(传统材料)、n!ce Straumann和LiSi Block GC(全结晶),以及Amber Mill和Cerec Tessera(预结晶)。抛光后,使用固化辐射计测量透光率,并用扫描电子显微镜(SEM)检查表面微观结构。数据采用双向方差分析(ANOVA)和Tukey事后检验进行分析。结果显示,无论材料类型如何,光强度均随陶瓷厚度的增加而降低。Amber Mill(0.50毫米)在537毫瓦/平方厘米时表现出最高光强度,其次是E.max CAD(475毫瓦/平方厘米)和n!ce Straumann(470毫瓦/平方厘米)。相比之下,LiSi Block GC(1.50毫米)不透光(0毫瓦/平方厘米),Cerec Tessera(60毫瓦/平方厘米)和E.max CAD(175毫瓦/平方厘米)在1.50毫米时透光率也较低。SEM分析确定了材料之间的结构差异。这些发现表明,CAD/CAM二硅酸锂陶瓷的成分和厚度均对透光率有显著影响。结果显示,材料成分和厚度对透光率值有显著影响,强调了在临床实践中选择合适的陶瓷类型和厚度以优化光固化树脂粘结过程中聚合反应的重要性。