Suppr超能文献

使用机器学习和深度学习模型的自动化咖啡烘焙程度分类

Automated Coffee Roast Level Classification Using Machine Learning and Deep Learning Models.

作者信息

Rivas René Ernesto García, Bertarini Pedro Luiz Lima, Fernandes Henrique

机构信息

Faculty of Computing, Federal University of Uberlandia, Uberlândia, Brazil.

Faculty of Electrical Engineering, Federal University of Uberlandia, Uberlândia, Brazil.

出版信息

J Food Sci. 2025 Sep;90(9):e70532. doi: 10.1111/1750-3841.70532.

Abstract

The coffee roasting process is a critical factor in determining the final quality of the beverage, influencing its flavour, aroma, and acidity. Traditionally, roast-level classification has relied on manual inspection, which is time-consuming, subjective, and prone to inconsistencies. However, advancements in machine learning (ML) and computer vision, particularly convolutional neural networks (CNNs), have shown great promise in automating and improving the accuracy of this process. This study evaluates multiple ML models for coffee roast level classification, including a CNN with Xception as a feature extractor, alongside AdaBoost, random forest (RF), and support vector machine (SVM). The models were trained and tested on a public dataset of 1,600 high-quality images, balanced across four roast levels: green, light, medium, and dark, to ensure robust performance. Experimental results demonstrate that all models achieved 100 % accuracy and F-1 scores, confirming their effectiveness in accurately distinguishing roast levels. Furthermore, the proposed approach was compared with previous studies, showing strong performance in roast classification. Image augmentation techniques were applied to improve generalizability in real-world applications. This research presents a reliable, scalable, and fully automated solution for roast-level classification, significantly contributing to quality control in the coffee industry. PRACTICAL APPLICATIONS: This research offers a reliable and automated way to classify coffee bean roast levels using image analysis and ML. It can help coffee producers and roasters improve quality control by providing faster, more consistent, and objective assessments of roast levels, ultimately ensuring a better product for consumers.

摘要

咖啡烘焙过程是决定咖啡饮品最终品质的关键因素,会影响其风味、香气和酸度。传统上,烘焙程度的分类依赖人工检查,这种方法既耗时又主观,而且容易出现不一致的情况。然而,机器学习(ML)和计算机视觉技术的进步,特别是卷积神经网络(CNN),在使这一过程自动化并提高其准确性方面显示出了巨大的潜力。本研究评估了多种用于咖啡烘焙程度分类的ML模型,包括以Xception作为特征提取器的CNN,以及AdaBoost、随机森林(RF)和支持向量机(SVM)。这些模型在一个包含1600张高质量图像的公共数据集上进行训练和测试,该数据集在绿色、浅度、中度和深度四个烘焙程度上保持平衡,以确保性能稳健。实验结果表明,所有模型的准确率和F-1分数均达到100%,证实了它们在准确区分烘焙程度方面的有效性。此外,将所提出的方法与先前的研究进行了比较,结果显示在烘焙分类方面表现出色。应用了图像增强技术以提高在实际应用中的通用性。本研究提出了一种可靠、可扩展且完全自动化的烘焙程度分类解决方案,对咖啡行业的质量控制有显著贡献。实际应用:本研究提供了一种可靠且自动化的方法,通过图像分析和ML对咖啡豆的烘焙程度进行分类。它可以帮助咖啡生产商和烘焙商通过对烘焙程度提供更快、更一致且客观的评估来改进质量控制,最终为消费者确保更好的产品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3640/12418525/9ea461d55fd4/JFDS-90-0-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验