Suppr超能文献

基于真实皮层解剖结构的经颅交流电刺激神经同步化多尺度模型。

Multi-scale model of neural entrainment by transcranial alternating current stimulation in realistic cortical anatomy.

作者信息

Huang Xuelin, Wei Xile, Wang Jiang, Yi Guosheng

机构信息

School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.

出版信息

J Comput Neurosci. 2025 Sep 8. doi: 10.1007/s10827-025-00912-7.

Abstract

Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS. Neural entrainment is quantified by calculating the phase-locking value (PLV) and preferred phase (PPh). We find that the tACS-induced E-field distributions across the L5 surface of interest (SOI) are heterogeneous, resulting in diverse neural entrainment of L5 PCs due to their sensitivities to the direction and intensity of the E-fields. Both PLV and PPh follow a smooth cosine dependency on the E-field polar angle, with minimal sensitivity to the azimuthal angle. PLV exhibits a positive linear dependence on the E-field intensity. However, PPh either increases or decreases logarithmically with E-field intensity that depends on the E-field direction. Correlation analysis reveals that neural entrainment can be largely explained by the normal component of the E-field or by somatic polarization, especially for E-field directed outward relative to the cortical surface. Moreover, cell morphology plays a crucial role in shaping the diverse neural entrainment to tACS. Although the uniform E-field extracted at the soma provides a good approximation for modeling tACS at the cellular level, the non-uniform E-field distribution should be considered for investigating more accurate cellular mechanisms of tACS. These findings highlight the crucial roles of heterogeneous E-field distributions, cell morphology, and E-field non-uniformity in modulating neuronal spiking activity by tACS in realistic neuroanatomy, deepening our understanding of the cellular mechanism underlying tACS. Our work bridges macroscopic brain stimulation with microscopic neural activity, which benefits the development of brain models and derived clinical applications relying on model-driven brain stimulation with tACS-induced weak E-fields.

摘要

经颅交流电刺激(tACS)能够对大脑活动进行非侵入性调节,在认知研究和临床应用方面具有广阔前景。然而,尚不清楚特定电场(E场)分布如何调节皮层神经元的放电活动。在此,我们使用一个多尺度计算框架,该框架将解剖学精确的头部模型与形态逼真的神经元模型相结合,以模拟第5层锥体神经元(L5 PCs)对传统M1-SO tACS产生的E场的反应。通过计算锁相值(PLV)和偏好相位(PPh)来量化神经同步。我们发现,tACS诱导的跨感兴趣的L5表面(SOI)的E场分布是不均匀的,由于L5 PCs对E场方向和强度的敏感性,导致它们的神经同步方式多样。PLV和PPh都对E场极角呈现出平滑的余弦依赖性,对方位角的敏感性最小。PLV对E场强度呈现出正线性依赖性。然而,PPh随E场强度的变化要么呈对数增加,要么呈对数减少,这取决于E场方向。相关性分析表明,神经同步在很大程度上可以由E场的法向分量或体细胞极化来解释,特别是对于相对于皮层表面向外的E场。此外,细胞形态在塑造对tACS的多样神经同步中起着关键作用。尽管在体细胞处提取的均匀E场为在细胞水平上模拟tACS提供了一个很好的近似,但在研究tACS更准确的细胞机制时,应考虑不均匀的E场分布。这些发现突出了不均匀E场分布、细胞形态和E场不均匀性在真实神经解剖结构中通过tACS调节神经元放电活动中的关键作用,加深了我们对tACS潜在细胞机制的理解。我们的工作将宏观脑刺激与微观神经活动联系起来,这有利于依赖tACS诱导的弱E场的模型驱动脑刺激的脑模型及衍生临床应用的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验