Suppr超能文献

使用卷积神经网络通过经颅磁刺激快速估计皮质神经元的激活阈值。

Rapid estimation of cortical neuron activation thresholds by transcranial magnetic stimulation using convolutional neural networks.

机构信息

Department of Biomedical Engineering, School of Engineering, Duke University, NC, USA.

Department of Electrical and Computer Engineering, School of Engineering, Duke University, NC, USA; Department of Mathematics, College of Arts and Sciences, Duke University, NC, USA.

出版信息

Neuroimage. 2023 Jul 15;275:120184. doi: 10.1016/j.neuroimage.2023.120184. Epub 2023 May 23.

Abstract

BACKGROUND

Transcranial magnetic stimulation (TMS) can modulate neural activity by evoking action potentials in cortical neurons. TMS neural activation can be predicted by coupling subject-specific head models of the TMS-induced electric field (E-field) to populations of biophysically realistic neuron models; however, the significant computational cost associated with these models limits their utility and eventual translation to clinically relevant applications.

OBJECTIVE

To develop computationally efficient estimators of the activation thresholds of multi-compartmental cortical neuron models in response to TMS-induced E-field distributions.

METHODS

Multi-scale models combining anatomically accurate finite element method (FEM) simulations of the TMS E-field with layer-specific representations of cortical neurons were used to generate a large dataset of activation thresholds. 3D convolutional neural networks (CNNs) were trained on these data to predict thresholds of model neurons given their local E-field distribution. The CNN estimator was compared to an approach using the uniform E-field approximation to estimate thresholds in the non-uniform TMS-induced E-field.

RESULTS

The 3D CNNs estimated thresholds with mean absolute percent error (MAPE) on the test dataset below 2.5% and strong correlation between the CNN predicted and actual thresholds for all cell types (R > 0.96). The CNNs estimated thresholds with a 2-4 orders of magnitude reduction in the computational cost of the multi-compartmental neuron models. The CNNs were also trained to predict the median threshold of populations of neurons, speeding up computation further.

CONCLUSION

3D CNNs can estimate rapidly and accurately the TMS activation thresholds of biophysically realistic neuron models using sparse samples of the local E-field, enabling simulating responses of large neuron populations or parameter space exploration on a personal computer.

摘要

背景

经颅磁刺激(TMS)通过在皮质神经元中引发动作电位来调节神经活动。TMS 神经激活可以通过将 TMS 诱导的电场(E 场)的特定于主体的头部模型与生物物理上逼真的神经元模型群体耦合来预测;然而,与这些模型相关的巨大计算成本限制了它们的实用性和最终向临床相关应用的转化。

目的

开发针对 TMS 诱导的 E 场分布的多室皮质神经元模型激活阈值的计算效率高的估计器。

方法

结合 TMS E 场的解剖精确有限元方法(FEM)模拟和皮质神经元的层特异性表示的多尺度模型用于生成大量激活阈值数据集。3D 卷积神经网络(CNN)基于这些数据进行训练,以根据局部 E 场分布预测模型神经元的阈值。将 CNN 估计器与使用均匀 E 场近似的方法进行比较,以估计非均匀 TMS 诱导的 E 场中的阈值。

结果

3D CNN 以测试数据集上的平均绝对百分比误差(MAPE)低于 2.5%来估计阈值,并且所有细胞类型的 CNN 预测和实际阈值之间都具有很强的相关性(R>0.96)。CNN 以多室神经元模型的计算成本减少 2-4 个数量级来估计阈值。还对 CNN 进行了训练以预测神经元群体的中位数阈值,从而进一步加快了计算速度。

结论

3D CNN 可以使用局部 E 场的稀疏样本快速准确地估计生物物理逼真的神经元模型的 TMS 激活阈值,从而能够模拟大神经元群体的反应或在个人计算机上进行参数空间探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa2c/10281353/b038c3ebe935/nihms-1906430-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验