Suppr超能文献

用潜在剖面分析来表征亚群体:使用锻炼者目标导向采用概况的非技术性介绍。

Representing subpopulations with latent profile analysis: a non-technical introduction using exercisers' goal orientation adoption profiles.

作者信息

Moore E Whitney G, Quartiroli Alessandro

机构信息

Department of Kinesiology, East Carolina University, Greenville, NC, USA.

Department of Psychology, University of Wisconsin-La Crosse, La Crosse, WI, USA.

出版信息

J Behav Med. 2025 Sep 9. doi: 10.1007/s10865-025-00596-5.

Abstract

Latent profile analysis (LPA) is in the finite mixture model analysis family and identifies subgroups by participants' responses to continuous variables (i.e., indicators); participants' probable membership in each subgroup is based on the similarity between the subgroup's prototypical responses and the person's unique responses. Compared to latent class analysis (LCA) with categorical data, LPA is a better fit for many variables and theories in behavioral medicine, because LPA can have continuous item, sub-scale, or scale scores as indicators, which can enable identifying and examining subgroups defined by responses representing complex, multidimensional concepts (e.g., orientations, motivations, well-being, ill-being, physical activity engagement) and biomarkers of diseases and disorders. Recently, the use of LPA has increased and as it continues to evolve, it is important researchers know best practice recommendations and explanations for both conducting as well as reading/reviewing LPA models. With this paper we: 1) discuss the strengths and weaknesses of LPA and the questions it is most appropriate to answer, 2) introduce LPA conceptually, 3) illustrate an LPA conducted with exercise psychology variables following current best practice recommendations, and 4) juxtapose resulting models from the LPA approach to a typical approach with the same data. We also share the data and syntax files used to conduct the basic steps of the LPA analyses as supplemental appendix files in addition to including the tables and figures for reporting LPA results following best practices.

摘要

潜在剖面分析(LPA)属于有限混合模型分析范畴,它通过参与者对连续变量(即指标)的反应来识别亚组;参与者在每个亚组中的可能归属基于亚组的典型反应与个人独特反应之间的相似性。与用于分类数据的潜在类别分析(LCA)相比,LPA更适合行为医学中的许多变量和理论,因为LPA可以将连续的项目、子量表或量表分数作为指标,这能够识别和检验由代表复杂多维概念(如取向、动机、幸福感、不幸福感、身体活动参与度)的反应以及疾病和障碍的生物标志物所定义的亚组。最近,LPA的使用有所增加,并且随着其不断发展,重要的是研究人员要了解进行以及阅读/审查LPA模型的最佳实践建议和解释。在本文中,我们:1)讨论LPA的优缺点以及它最适合回答的问题,2)从概念上介绍LPA,3)按照当前最佳实践建议展示一项使用运动心理学变量进行的LPA,4)将LPA方法得出的模型与对相同数据采用的典型方法得出的模型并列比较。除了按照最佳实践报告LPA结果的表格和图表外,我们还作为补充附录文件分享了用于进行LPA分析基本步骤的数据和语法文件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验