Kundu Sweta, Sarkar Sampriti, Ghosh Suparna, Acharya Chowdhury Avik
Department of Biosciences, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal 700109, India.
Department of Biosciences, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal 700109, India.
Biochem Pharmacol. 2025 Sep 7;242(Pt 2):117313. doi: 10.1016/j.bcp.2025.117313.
The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes. Aberrant methylation patterns are characterized by promoter hypermethylation of tumor suppressor genes (BRCA1, CDH1, PTEN, RARβ), which leads to their suppression, and global hypomethylation that activates oncogenes and promotes genomic instability. Central to these events is the dysregulation of DNA methyltransferases which drive maladaptive epigenetic programming. Nucleoside DNMT inhibitors (DNMTis) incorporate into DNA to trap and deplete DNMTs, while non-nucleoside DNMTis avoid DNA integration and directly target DNMT through catalytic site binding, cofactor competition, DNMT-DNA interaction disruption, or DNMT degradation to achieve improved selectivity and reduced toxicity. Preclinical and clinical studies demonstrate that DNMTis not only restore the expression of silenced tumor suppressor genes but also enhance the efficacy of chemotherapy, sensitize homologous recombination-deficient tumors to PARP inhibitors, and synergize with histone deacetylase inhibitors and immunotherapies. Notably, DNMTi monotherapies have shown significant antitumor effects in breast cancer models. Furthermore, methylation profiling holds translational potential as predictive biomarker, particularly in triple-negative breast cancer, where DNMT inhibition may expand therapeutic opportunities. This review highlights the mechanistic underpinnings of DNMT dysregulation, the therapeutic landscape of DNMT inhibitors, and the integration of methylation profiling into precision oncology.
乳腺癌的恶性表现是由复杂的分子改变驱动的,这些改变不仅包括基因突变,还包括表观遗传失调。其中,DNA甲基化是一种关键且可逆的表观遗传修饰,对乳腺癌的发生、发展和治疗耐药性有显著影响。这个过程由DNA甲基转移酶(DNMTs)介导,涉及将甲基基团添加到CpG二核苷酸内的胞嘧啶残基上,导致基因转录抑制。异常的甲基化模式表现为肿瘤抑制基因(BRCA1、CDH1、PTEN、RARβ)的启动子高甲基化,从而导致其抑制,以及全基因组低甲基化,激活癌基因并促进基因组不稳定。这些事件的核心是驱动适应性不良表观遗传编程的DNA甲基转移酶失调。核苷类DNMT抑制剂(DNMTis)掺入DNA以捕获和消耗DNMTs,而非核苷类DNMTis避免DNA整合,并通过催化位点结合、辅因子竞争、DNMT-DNA相互作用破坏或DNMT降解直接靶向DNMT,以实现更高的选择性和更低的毒性。临床前和临床研究表明,DNMTis不仅能恢复沉默的肿瘤抑制基因的表达,还能增强化疗疗效,使同源重组缺陷肿瘤对PARP抑制剂敏感,并与组蛋白去乙酰化酶抑制剂和免疫疗法协同作用。值得注意的是,DNMTi单药疗法在乳腺癌模型中已显示出显著的抗肿瘤作用。此外,甲基化谱作为预测生物标志物具有转化潜力,特别是在三阴性乳腺癌中,DNMT抑制可能会扩大治疗机会。本综述强调了DNMT失调的机制基础、DNMT抑制剂的治疗前景,以及甲基化谱在精准肿瘤学中的整合。