Suppr超能文献

通过人工智能在锥形束计算机断层扫描(CBCT)图像上检测和分割上颌第一磨牙近中颊根第二根管的两步法。

Two step approach for detecting and segmenting the second mesiobuccal canal of maxillary first molars on cone beam computed tomography (CBCT) images via artificial intelligence.

作者信息

Mansour Sally, Anter Enas, Mohamed Ali Khater, Dahaba Mushira M, Mousa Arwa

机构信息

Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.

Department of Computer Science, Faculty of Computer Science, October University for Modern Sciences and Arts (MSA), Giza, Egypt.

出版信息

BMC Oral Health. 2025 Sep 8;25(1):1404. doi: 10.1186/s12903-025-06796-4.

Abstract

AIM

The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

METHODOLOGY

CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing. The data were used to train the AI model in 2 separate steps: a classification model based on a customized CNN and a segmentation model based on U-Net. A confusion matrix and receiver-operating characteristic (ROC) analysis were used in the statistical evaluation of the results of the classification model, whereas the Dice-coefficient (DCE) was used to express the segmentation accuracy.

RESULTS

F1 score, testing accuracy, recall and precision values were 0.93, 0.87, 1.0 and 0.87 respectively, for the cropped images of MB root of maxillary 1st molar teeth in the testing group. The testing loss was 0.4, and the area under the curve (AUC) value was 0.57. The segmentation accuracy results were satisfactory, where the DCE of training was 0.85 and DCE of testing was 0.79.

CONCLUSION

MB2 in the maxillary first molar can be precisely detected and segmented via the developed AI algorithm in CBCT images.

TRIAL REGISTRATION

Current Controlled Trial Number NCT05340140. April 22, 2022.

摘要

目的

本研究旨在评估基于卷积神经网络(CNN)和U-Net的定制深度学习模型在锥束计算机断层扫描(CBCT)图像上检测和分割上颌第一磨牙近中颊根第二根管(MB2)的准确性。

方法

将37例患者的CBCT扫描图像导入3D Slicer软件,对上颌第一磨牙近中颊根(MB)的根管进行裁剪和分割。注释数据分为两组:80%用于训练和验证,20%用于测试。数据分两个独立步骤用于训练人工智能模型:基于定制CNN的分类模型和基于U-Net的分割模型。在对分类模型结果进行统计评估时,使用混淆矩阵和受试者工作特征(ROC)分析,而Dice系数(DCE)用于表示分割准确性。

结果

测试组上颌第一磨牙MB根裁剪图像的F1分数、测试准确率、召回率和精确率分别为0.93、0.87、1.0和0.87。测试损失为0.4,曲线下面积(AUC)值为0.57。分割准确性结果令人满意,训练的DCE为0.85,测试的DCE为0.79。

结论

通过在CBCT图像中开发的人工智能算法可以精确检测和分割上颌第一磨牙的MB2。

试验注册

当前对照试验编号NCT05340140。2022年4月22日。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c599/12418648/1efa439b6aca/12903_2025_6796_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验