Suppr超能文献

解离神经元培养中的偏差检测与规律敏感性

Deviance detection and regularity sensitivity in dissociated neuronal cultures.

作者信息

Zhang Zhuo, Yaron Amit, Akita Dai, Shiramatsu Tomoyo Isoguchi, Chao Zenas C, Takahashi Hirokazu

机构信息

Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.

International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.

出版信息

Front Neural Circuits. 2025 Aug 25;19:1584322. doi: 10.3389/fncir.2025.1584322. eCollection 2025.

Abstract

INTRODUCTION

Understanding how neural networks process complex patterns of information is crucial for advancing both neuroscience and artificial intelligence. To investigate fundamental principles of neural computation, we examined whether dissociated neuronal cultures, one of the most primitive living neural networks, exhibit regularity sensitivity beyond mere stimulus-specific adaptation and deviance detection.

METHODS

We recorded activity to oddball electrical stimulation paradigms from dissociated rat cortical neurons cultured on high-resolution CMOS microelectrode arrays. We examined the effects of pharmacological manipulation on responses using the N-methyl-D-aspartate (NMDA) receptor antagonist. To assess regularity sensitivity, we compared neural responses between predictable periodic sequences and random sequences of stimuli.

RESULTS

In oddball electrical stimulation paradigms, we confirmed that the neuronal culture produced mismatch responses (MMRs) with true deviance detection beyond mere adaptation. These MMRs were dependent on the N-methyl-D-aspartate (NMDA) receptors, similar to mismatch negativity (MMN) in humans, which is known to have true deviance detection properties. Crucially, we also showed sensitivity to the statistical regularity of stimuli, a phenomenon previously observed only in intact brains: the MMRs in a predictable, periodic sequence were smaller than those in a commonly used sequence in which the appearance of the deviant stimulus was random and unpredictable.

DISCUSSION

These results challenge the traditional view that a hierarchically structured neural network is required to process complex temporal patterns, suggesting instead that deviant detection and regularity sensitivity are inherent properties arising from the primitive neural network. They also suggest new directions for the development of neuro-inspired artificial intelligence systems, emphasizing the importance of incorporating adaptive mechanisms and temporal dynamics in the design of neural networks.

摘要

引言

理解神经网络如何处理复杂的信息模式对于推动神经科学和人工智能的发展至关重要。为了研究神经计算的基本原理,我们考察了离体神经元培养物(最原始的活体神经网络之一)是否表现出超越单纯刺激特异性适应和偏差检测的规律性敏感性。

方法

我们记录了培养在高分辨率互补金属氧化物半导体(CMOS)微电极阵列上的离体大鼠皮层神经元对奇偶数刺激范式的活动。我们使用N-甲基-D-天冬氨酸(NMDA)受体拮抗剂研究了药物操纵对反应的影响。为了评估规律性敏感性,我们比较了可预测的周期性序列和随机刺激序列之间的神经反应。

结果

在奇偶数刺激范式中,我们证实神经元培养物产生了具有真正偏差检测功能的失配反应(MMR),而不仅仅是适应。这些MMR依赖于N-甲基-D-天冬氨酸(NMDA)受体,类似于人类的失配负波(MMN),已知其具有真正的偏差检测特性。至关重要的是,我们还显示了对刺激统计规律性的敏感性,这是一种以前仅在完整大脑中观察到的现象:在可预测的周期性序列中的MMR小于在常用序列中的MMR,在常用序列中异常刺激的出现是随机且不可预测的。

讨论

这些结果挑战了传统观点,即处理复杂时间模式需要分层结构的神经网络,相反,表明偏差检测和规律性敏感性是原始神经网络固有的属性。它们还为受神经启发的人工智能系统的发展提出了新方向,强调了在神经网络设计中纳入自适应机制和时间动态的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f8b/12415055/c80562a76c8e/fncir-19-1584322-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验