Guo Manchuan, Guo Jin, Ren Tao, Deng Haici, Zhu Yanqiu, Zhu Jinliang
School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University Nanning 530004 P. R. China
Chem Sci. 2025 Sep 1. doi: 10.1039/d5sc04604a.
To overcome the persistent challenges of sluggish lithium polysulfide (LiPS) conversion kinetics and the shuttle effect in Li-S batteries, this work introduces a novel, cost-effective thermal treatment strategy for synthesizing high-entropy metal phosphide catalysts using cation-bonded phosphate resins. For the first time, we successfully fabricated single-phase high-entropy FeCoNiCuMnP nanoparticles anchored on a porous carbon network (HEP/C). HEP/C demonstrates enhanced electronic conductivity and superior LiPS adsorption capability, substantially accelerating its redox kinetics. These catalytic improvements arise from (1) synergistic electronic modulation by the five constituent metals, which elevates d-band electron energy levels, and (2) lattice distortion induced by atomic radius mismatches, collectively generating a dense array of highly active catalytic sites. The HEP/C@S cathode delivers an ultrahigh initial specific capacity of 1402.18 mA h g at 0.2C, outstanding cycling stability with merely 0.05% capacity decay per cycle over 1000 cycles at 5C, and a remarkable initial energy density of 455 Wh kg in practical pouch cells. This work not only presents an efficient synthesis strategy for high-entropy materials but also provides fundamental insights into the design principles of advanced LiPS conversion catalysts for high-performance Li-S batteries.
为克服锂硫电池中多硫化锂(LiPS)转化动力学缓慢和穿梭效应等长期存在的挑战,本工作引入了一种新颖且具有成本效益的热处理策略,用于使用阳离子键合磷酸盐树脂合成高熵金属磷化物催化剂。我们首次成功制备了锚定在多孔碳网络(HEP/C)上的单相高熵FeCoNiCuMnP纳米颗粒。HEP/C表现出增强的电子导电性和优异的LiPS吸附能力,极大地加速了其氧化还原动力学。这些催化性能的提升源于:(1)五种组成金属的协同电子调制,提高了d带电子能级;(2)原子半径不匹配引起的晶格畸变,共同产生了密集排列的高活性催化位点。HEP/C@S阴极在0.2C时具有1402.18 mA h g的超高初始比容量,在5C下1000次循环中每循环仅0.05%的容量衰减,具有出色的循环稳定性,并且在实际软包电池中具有455 Wh kg的显著初始能量密度。这项工作不仅提出了一种高效的高熵材料合成策略,还为高性能锂硫电池的先进LiPS转化催化剂的设计原则提供了基本见解。