Qiu Xiansheng, Lu Zhenwei, Li Chongfei, Chen Sifang, Zhou Xiaoping, Peng Zhizhu, Chen Li, Zhao Wen Peng, Shi JingJing, He Jiawei, Xia Xuewei, Wang Zhanxiang
The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
The First Hospital Affiliated of Xiamen University, Xiamen, Fujian, People's Republic of China.
Cancer Manag Res. 2025 Sep 3;17:1881-1895. doi: 10.2147/CMAR.S538752. eCollection 2025.
Lung cancer brain metastasis (LCBM) accounts for 40-50% of intracranial malignancies, with emerging evidence of alternative metastatic pathways circumventing the blood-brain barrier. Existing prognostic models lack validation in Asian populations and molecular stratification. This multicenter study aimed to develop a clinical nomogram integrating clinicopathological and molecular determinants for personalized LCBM management.
Retrospective analysis of 522 surgically treated LCBM patients (2015-2021) from four Chinese institutions was conducted. Patients were randomized 7:3 into training (n=365) and validation (n=157) cohorts. Multivariate Cox regression identified independent prognostic factors, which were incorporated into a nomogram predicting 6-/12-/18-month overall survival (OS). Model performance was assessed via time-dependent ROC curves (AUC), calibration plots, and decision curve analysis (DCA).
The median OS after neurosurgery was 9 months (range: 4-18 months), with 6-, 12-, and 18-month survival rates of 86.2%, 46.7%, and 17.2%, respectively. Independent predictive factors included brain metastasis size ≥5 cm, Leptomeningeal metastasis(LM), EGFR mutation with TKI treatment, and extracranial metastases. The nomogram demonstrated robust discriminative ability and calibration. EGFR-mutant patients receiving postoperative TKIs showed significantly prolonged survival attributable to enhanced blood-brain barrier permeability. Finally, the authors developed a web-based dynamic nomogram for LCBM patients to facilitate clinical implementation.
This study establishes a validated prognostic model integrating tumor burden, EGFR mutation status, and metastatic patterns. It demonstrates that EGFR-guided TKI therapy and bone metastasis surveillance critically influence LCBM outcomes. The nomogram provides a quantifiable framework for risk-adapted therapeutic decisions, advancing precision oncology in neuro-oncology practice.
肺癌脑转移(LCBM)占颅内恶性肿瘤的40%-50%,越来越多的证据表明存在绕过血脑屏障的替代转移途径。现有的预后模型在亚洲人群中缺乏验证且缺乏分子分层。这项多中心研究旨在开发一种整合临床病理和分子决定因素的临床列线图,用于个性化的LCBM管理。
对来自中国四家机构的522例接受手术治疗的LCBM患者(2015-2021年)进行回顾性分析。患者按7:3随机分为训练队列(n=365)和验证队列(n=157)。多变量Cox回归确定独立的预后因素,并将其纳入预测6/12/18个月总生存期(OS)的列线图。通过时间依赖性ROC曲线(AUC)、校准图和决策曲线分析(DCA)评估模型性能。
神经外科手术后的中位OS为9个月(范围:4-18个月),6个月、12个月和18个月的生存率分别为86.2%、46.7%和17.2%。独立预测因素包括脑转移瘤大小≥5 cm、软脑膜转移(LM)、接受TKI治疗的EGFR突变以及颅外转移。该列线图显示出强大的辨别能力和校准能力。接受术后TKI治疗的EGFR突变患者生存期显著延长,这归因于血脑屏障通透性增强。最后,作者为LCBM患者开发了一个基于网络的动态列线图,以促进临床应用。
本研究建立了一个整合肿瘤负荷、EGFR突变状态和转移模式的经过验证的预后模型。研究表明,EGFR引导的TKI治疗和骨转移监测对LCBM的预后有至关重要的影响。该列线图为风险适应性治疗决策提供了一个可量化的框架,推动了神经肿瘤学实践中的精准肿瘤学发展。