Li Lan-Xing, Li Ying-Xian, Feng Yu-Shuai, Du Ya-Hao, Ouyang Peng, Chen Qin, Yang Hui, Ye Huan, Cao Fei-Fei
College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
State Key Laboratory of Material Processing and Die & Mould Technology, Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Natl Sci Rev. 2025 Jul 30;12(9):nwaf305. doi: 10.1093/nsr/nwaf305. eCollection 2025 Sep.
The stress distribution in Li metal strongly affects the interfacial Li-ion diffusion, thereby influencing the morphology of plated Li and the performance of the battery. Here, we report a mechano-electrochemical coupling strategy that utilizes an arched structured carbon aerogel to achieve stable Li-plating/stripping electrochemistry. The arch-structured carbon aerogel can actively regulate stress distributions in response to the compressive stresses induced by Li deposition, generating the transition of stress from compressive on the convex surface to tensile on the concave surface, which can effectively promote the Li-migration kinetics and thus suppress the non-uniform deposition of Li. The carbon aerogel with synergistically enriched-oxygen vacancies on its surface boosts rapid interfacial Li-ion migration by reducing the Li migration barrier. The non-dendritic Li-metal anode demonstrates smaller electrode level volume variation (<3%), higher coulombic efficiency (98.5%) and a longer cycle lifetime (2000 h at 1 mA cm) than conventional planar substrates. A full cell based on the LiFePO cathode shows a high capacity retention of 90.2% after 300 cycles at 1 C. The carbon-aerogel/Li|sulfurized polyacrylonitrile full cell delivers a reversible capacity of 1130 mA h g over 270 cycles at 0.2 C. This work reveals a stress-driven dendrite growth suppression mechanism and provides insights into the design of dendrite-free metal anodes for rechargeable metal batteries.
锂金属中的应力分布强烈影响界面锂离子扩散,进而影响锂镀层的形态和电池性能。在此,我们报告一种机械电化学耦合策略,该策略利用拱形结构的碳气凝胶实现稳定的锂电镀/剥离电化学。拱形结构的碳气凝胶能够响应锂沉积诱导的压缩应力,主动调节应力分布,产生从凸面的压缩应力到凹面的拉伸应力的转变,这可以有效促进锂迁移动力学,从而抑制锂的不均匀沉积。表面具有协同富集氧空位的碳气凝胶通过降低锂迁移势垒来促进快速的界面锂离子迁移。与传统平面基板相比,非树枝状锂金属阳极表现出更小的电极水平体积变化(<3%)、更高的库仑效率(98.5%)和更长的循环寿命(在1 mA cm下为2000 h)。基于磷酸铁锂阴极的全电池在1 C下循环300次后显示出90.2%的高容量保持率。碳气凝胶/锂|硫化聚丙烯腈全电池在0.2 C下270次循环中提供1130 mA h g的可逆容量。这项工作揭示了一种应力驱动的枝晶生长抑制机制,并为可充电金属电池无枝晶金属阳极的设计提供了见解。