Suppr超能文献

锂金属负极:深化我们对液体和固体电解质中循环现象的机理理解。

Lithium Metal Anodes: Advancing our Mechanistic Understanding of Cycling Phenomena in Liquid and Solid Electrolytes.

作者信息

Sanchez Adrian J, Dasgupta Neil P

机构信息

Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.

Department of Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.

出版信息

J Am Chem Soc. 2024 Feb 21;146(7):4282-4300. doi: 10.1021/jacs.3c05715. Epub 2024 Feb 9.

Abstract

Lithium metal anodes have the potential to be a disruptive technology for next-generation batteries with high energy densities, but their electrochemical performance is limited by a lack of fundamental understanding into the mechanistic origins that underpin their poor reversibility, morphological evolution (including dendrite growth), and interfacial instability. The goal of this perspective is to summarize the current state-of-the-art understanding of these phenomena, and highlight knowledge gaps where additional research is needed. The various stages of cycling are described sequentially, including nucleation, growth, open-circuit rest periods, and electrodissolution (stripping). A direct comparison of lessons learned from liquid and solid-state electrolyte systems is made throughout the discussion, providing cross-cutting insights between these research communities. Major themes of the discussion include electro-chemo-mechanical coupling, insights from in situ/operando analysis, and the interplay between experimental observations and computational modeling. Finally, a series of fundamental research questions are proposed to identify critical knowledge gaps and inform future research directions.

摘要

锂金属阳极有潜力成为下一代高能量密度电池的颠覆性技术,但其电化学性能受到限制,原因在于对其可逆性差、形态演变(包括枝晶生长)和界面不稳定性的机理起源缺乏基本认识。本文观点的目标是总结当前对这些现象的最新认识,并突出需要进一步研究的知识空白。依次描述了循环的各个阶段,包括成核、生长、开路静置期和电溶解(脱嵌)。在整个讨论过程中,对从液态和固态电解质系统中吸取的经验教训进行了直接比较,为这些研究领域提供了交叉见解。讨论的主要主题包括电化学机械耦合、原位/工况分析的见解,以及实验观察与计算建模之间的相互作用。最后,提出了一系列基础研究问题,以确定关键的知识空白并为未来的研究方向提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验