Suppr超能文献

通过自旋肖特基结实现手性钙钛矿中手性诱导自旋选择性的空间映射。

Spatial mapping of chiral-induced spin selectivity in chiral perovskite via spin-Schottky junction.

作者信息

Li Minghui, Chen Zhongwei, Lang Xiting, Zhang Junchuan, Jiang Yongjie, Tian Hao, Ye Fang, Liu Xirui, Gou Yangyang, Xi Herui, Guo Wei, Ye Jichun, Beard Matthew C, Lu Haipeng, Xiao Chuanxiao

机构信息

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.

出版信息

Natl Sci Rev. 2025 Jul 21;12(9):nwaf295. doi: 10.1093/nsr/nwaf295. eCollection 2025 Sep.

Abstract

Chiral halide perovskite (c-HP) semiconductors exhibit on average a large chiral-induced spin selectivity (CISS) effect. Nevertheless, the microscopic details of CISS and its integration in opto-spintronic constructs remain nascent. Reliable reporting of CISS performance characteristics represents a significant challenge in providing the necessary design rules. We show a Kelvin probe force microscopy (KPFM) method that can quantitatively evaluate and spatially map the chirality-dependent surface contact potential difference resulting from the formation of a spin-Schottky junction. We revealed inhomogeneity in the CISS response, where low-CISS regions in the c-HP films reduce the overall macroscopic average, likely serving as a key factor in optimizing macroscopic performance. We also observed that although c-HP films made from higher precursor concentrations lead to thicker films and higher carrier concentrations with subsequent larger barrier heights in the Schottky junction, stronger spin relaxation due to non-ideal film quality reduces spin polarization.

摘要

手性卤化物钙钛矿(c-HP)半导体平均表现出较大的手性诱导自旋选择性(CISS)效应。然而,CISS的微观细节及其在光自旋电子器件中的集成仍处于起步阶段。可靠地报告CISS性能特征是提供必要设计规则的一项重大挑战。我们展示了一种开尔文探针力显微镜(KPFM)方法,该方法可以定量评估并在空间上绘制由自旋肖特基结形成导致的手性相关表面接触电势差。我们揭示了CISS响应中的不均匀性,其中c-HP薄膜中的低CISS区域降低了整体宏观平均值,这可能是优化宏观性能的关键因素。我们还观察到,尽管由较高前驱体浓度制成的c-HP薄膜会导致更厚的薄膜和更高的载流子浓度,进而在肖特基结中具有更大的势垒高度,但由于非理想的薄膜质量导致的更强自旋弛豫会降低自旋极化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1862/12416287/0c54cb4a4171/nwaf295fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验