Chellegui Mohamed, Benhamed Lakhdar, Salih Raad Nasrullah, Salhi Ines, Benmetir Sofiane, Ben Ahmed Ali, Mohammad-Salim Haydar A, de Julián-Ortize Jesus Vicente
Laboratory of Organic Chemistry (LR17ES08), Faculty of Sciences, University of Sfax 3038 Sfax Tunisia.
Namur Institute of Structured Matter, University of Namur Rue de Bruxelles, 61 B-5000 Namur Belgium.
RSC Adv. 2025 Sep 8;15(39):32271-32283. doi: 10.1039/d5ra04143k. eCollection 2025 Sep 5.
In this contribution, Molecular Electron Density Theory (MEDT) is employed to investigate the (3 + 2) cycloaddition reaction between ()--methyl--(2-furyl)-nitrone 1 and but-2-ynedioic acid 2. DFT calculations at the M06-2X-D3/6-311+G(d,p) level of theory under solvent-free conditions at room temperature show that this reaction proceeds CA3-Z diastereoselectivity, with the formation of the CA3-Z cycloadduct being both thermodynamically and kinetically more favoured than the CA4-Z one. Reactivity parameters obtained from CDFT calculations reveal that compound 1 predominantly behaves as a nucleophile with moderate electrophilic features, in contrast to compound 2, which demonstrates strong electrophilicity and limited nucleophilic ability. This disparity in electronic properties suggests a polar mechanism for the investigated 32CA reaction. Then, bonding evolution theory shows that this cycloaddition proceeds a one-step asynchronous process. On the other hand, both CA3-Z and CA4-Z cycloadducts demonstrate promising characteristics as lead compounds for drug development. Molecular docking studies indicate moderate affinity toward the 7BV2 protease, while their physicochemical properties and compliance with major drug-likeness rules support their potential as orally bioavailable agents. Furthermore, PASS predictions suggest a wide range of biological activities, notably in inflammation, neuroprotection, and anticancer applications. These findings, in line with experimental cytotoxicity data, highlight the therapeutic potential of these isoxazolidine derivatives and warrant further experimental validation.
在本论文中,运用分子电子密度理论(MEDT)研究了()-甲基-(2-呋喃基)-硝酮1与丁-2-炔二酸2之间的(3 + 2)环加成反应。在室温无溶剂条件下,采用M06-2X-D3/6-311+G(d,p)理论水平进行的DFT计算表明,该反应具有CA3-Z非对映选择性,生成CA3-Z环加成物在热力学和动力学上均比CA4-Z环加成物更有利。从CDFT计算获得的反应性参数表明,化合物1主要表现为具有适度亲电特征的亲核试剂,而化合物2则表现出强亲电性和有限的亲核能力。电子性质的这种差异表明所研究的32CA反应具有极性机理。然后,键演化理论表明该环加成反应是一步异步过程。另一方面,CA3-Z和CA4-Z环加成物均显示出作为药物开发先导化合物的良好特性。分子对接研究表明它们对7BV2蛋白酶具有适度亲和力,而它们的物理化学性质以及符合主要类药规则支持它们作为口服生物可利用药物的潜力。此外,PASS预测表明它们具有广泛的生物活性,特别是在炎症、神经保护和抗癌应用方面。这些发现与实验细胞毒性数据一致,突出了这些异恶唑烷衍生物的治疗潜力,值得进一步的实验验证。