Chen Ziyin, Zhang Mingxiao, Shen Congrong, Zhao Xinyu, Wang Jianfeng, Wang Xianwen
Department of Urology, China-Japan Friendship Hospital, Beijing, 100029, PR China.
Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, PR China.
Mater Today Bio. 2025 Aug 25;34:102245. doi: 10.1016/j.mtbio.2025.102245. eCollection 2025 Oct.
Organ transplantation faces critical challenges, including donor shortages, suboptimal preservation, ischemia-reperfusion injury (IRI), and immune rejection. Nanotechnology offers transformative solutions by leveraging precision-engineered materials to enhance graft viability and outcomes. This review highlights nanomaterials' roles in revolutionizing organ preservation. Nanoscale oxygen carriers, such as perfluorocarbon-based systems, address hypoxia by improving graft oxygenation and angiogenesis. Advanced drug delivery systems enable targeted immunosuppression, reducing systemic toxicity while enhancing therapeutic efficacy. Antioxidant and antimicrobial nanomaterials integrated into preservation solutions mitigate oxidative stress and microbial contamination during storage. Additionally, nanotechnology facilitates real-time monitoring of graft rejection via biosensing platforms, enabling early intervention. Despite preclinical successes in renal, hepatic, and pancreatic islet models, clinical translation requires resolving challenges like nanoparticle biodistribution, biocompatibility, and scalability for human organs. By bridging material science and transplantation medicine, nanotechnology redefines organ viability criteria, extends preservation windows, and expands donor pools. This synthesis of interdisciplinary innovations positions nanomaterials as pivotal tools for achieving the next paradigm shift in transplant outcomes, emphasizing urgent clinical translation to address unmet needs in global healthcare.
器官移植面临着严峻挑战,包括供体短缺、保存欠佳、缺血再灌注损伤(IRI)和免疫排斥。纳米技术通过利用精密工程材料来提高移植物的存活率和治疗效果,提供了变革性的解决方案。本综述强调了纳米材料在革新器官保存方面的作用。纳米级氧载体,如基于全氟碳的系统,通过改善移植物的氧合作用和血管生成来解决缺氧问题。先进的药物递送系统能够实现靶向免疫抑制,降低全身毒性,同时提高治疗效果。整合到保存溶液中的抗氧化和抗菌纳米材料可减轻储存期间的氧化应激和微生物污染。此外,纳米技术通过生物传感平台促进对移植物排斥的实时监测,从而实现早期干预。尽管在肾脏、肝脏和胰岛模型的临床前研究中取得了成功,但临床转化需要解决诸如纳米颗粒生物分布、生物相容性以及人体器官的可扩展性等挑战。通过将材料科学与移植医学相结合,纳米技术重新定义了器官存活标准,延长了保存窗口,并扩大了供体库。这种跨学科创新的融合将纳米材料定位为实现移植结果下一次范式转变的关键工具,强调迫切需要进行临床转化以满足全球医疗保健中未满足的需求。