Galli Roberta, Rix Jan, Leonidou Tina, Kirsche Katrin, Koch Edmund, Temme Achim, Eyüpoglu Ilker Y, Uckermann Ortrud
Medical Physics and Biomedical Engineering, Faculty of Medicine, TU Dresden, Dresden, Germany.
Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
Biochem Biophys Rep. 2025 Aug 28;44:102227. doi: 10.1016/j.bbrep.2025.102227. eCollection 2025 Dec.
Brillouin microscopy allows mechanical investigations of biological materials at the subcellular level and can be integrated with Raman spectroscopy for simultaneous chemical mapping, thus enabling a more comprehensive interpretation of biomechanics. The present study investigates different in vitro glioblastoma models using a combination of Brillouin and Raman microspectroscopy. Spheroids of the U87-MG cell line and two patient-derived cell lines as well as patient-derived organoids were used. Brillouin microscopy provided maps of viscoelastic parameters, while Raman spectroscopy identified key biochemical components such as proteins, lipids, glycogen and cholesterol. Cluster analysis of the Raman spectra allowed the categorization of biochemical groups and the correlation of their Brillouin shift and bandwidth across the different glioblastoma models. The results showed that spheroids from the same cell line exhibited relatively homogeneous biomechanical properties, while differences existed between different cell lines. In contrast, organoids from the same patient exhibited greater mechanical and biochemical heterogeneity. Brillouin shift and bandwidth showed significant variation among Raman clusters, highlighting the need to consider biochemical composition in biomechanical assessments. The cytoplasmic protein cluster was biochemically and biomechanically consistent across models, while lipid- and glycogen-related clusters varied. The approach used in this study facilitates the interpretation of Brillouin data in heterogeneous biological systems and allows comparisons between different models. The results emphasize the need for multimodal analysis for correct interpretation of biomechanical measurements in complex tissues and for comparison between heterogeneous samples.
布里渊显微镜术能够在亚细胞水平对生物材料进行力学研究,并且可以与拉曼光谱联用进行同步化学成像,从而能够对生物力学进行更全面的阐释。本研究结合布里渊和拉曼显微光谱对不同的体外胶质母细胞瘤模型进行了研究。使用了U87-MG细胞系的球体、两种患者来源的细胞系以及患者来源的类器官。布里渊显微镜术提供了粘弹性参数图,而拉曼光谱则识别出了蛋白质、脂质、糖原和胆固醇等关键生化成分。对拉曼光谱进行聚类分析,能够对生化基团进行分类,并确定其在不同胶质母细胞瘤模型中的布里渊频移和带宽的相关性。结果表明,来自同一细胞系的球体表现出相对均匀的生物力学特性,而不同细胞系之间则存在差异。相比之下,来自同一名患者的类器官表现出更大的力学和生化异质性。布里渊频移和带宽在拉曼聚类之间表现出显著差异,突出了在生物力学评估中考虑生化组成的必要性。细胞质蛋白聚类在各模型中在生化和生物力学方面保持一致,而脂质和糖原相关聚类则有所不同。本研究中使用的方法有助于解释异质生物系统中的布里渊数据,并允许在不同模型之间进行比较。结果强调了多模态分析对于正确解释复杂组织中的生物力学测量以及对异质样品进行比较的必要性。