Tarrío Juan José, Rey-Tarrío Francisco, Hermida Borja, Fernández Berta, Crassous Jeanne, Quiñoá Emilio, Rodríguez Rafael, Freire Félix
Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela E-15782, Spain.
Departamento de Química Física, Universidade de Santiago de Compostela, Santiago de Compostela E-15782, Spain.
ACS Nano. 2025 Sep 23;19(37):33423-33429. doi: 10.1021/acsnano.5c10476. Epub 2025 Sep 10.
Archimedean spirals are architectural motifs that are found in nature. The facial asymmetry of amphiphilic molecules or macromolecules has been a key parameter in the preparation of these well-organized two-dimensional nanostructures in the laboratory. This facial asymmetry is also present in the helical grooves of chiral helical substituted poly(phenylacetylene)s (PPAs) and poly(diphenylacetylene)s (PDPAs), making them excellent candidates for self-assembly into 2D Archimedean nanospirals or nanotoroids. The facial asymmetry of the helix groove, with different polarities and hydrophobic/hydrophilic behaviors, impacts the self-assembly of -PPAs and -PDPAs compared to their -substituted counterparts, which possess facial symmetry in the helix grooves. As a result, while -substituted PPAs and -substituted PDPAs self-assemble by drop-casting on highly oriented pyrolytic graphite to form 2D crystals via parallel packing of helical polymer chains, -substituted helical polymers undergo intramolecular self-assembly to create a 2D chiral Archimedean spiral nanostructure from a single polymer chain. The structural parameters obtained for the helical polymer in the 2D crystal and 2D chiral Archimedean spiral nanostructures are identical, indicating that the secondary structure of the polymer remains unchanged in both 2D nanomaterials. This finding regarding the self-assembly of the helical polymer into 2D chiral Archimedean spiral nanostructures allows the preparation of chiral nanostructures with potential applications in asymmetric catalysis, molecular recognition, and other cutting-edge applications.
阿基米德螺旋是自然界中存在的建筑图案。两亲性分子或大分子的面不对称性是在实验室中制备这些有序二维纳米结构的关键参数。这种面不对称性也存在于手性螺旋取代聚(苯乙炔)(PPAs)和聚(二苯乙炔)(PDPAs)的螺旋凹槽中,使它们成为自组装成二维阿基米德纳米螺旋或纳米环面的极佳候选物。与在螺旋凹槽中具有面对称性的其取代对应物相比,具有不同极性和疏水/亲水行为的螺旋凹槽的面不对称性影响了-PPAs和-PDPAs的自组装。因此,虽然取代的PPAs和取代的PDPAs通过滴铸在高度取向的热解石墨上自组装,通过螺旋聚合物链的平行堆积形成二维晶体,但取代的螺旋聚合物进行分子内自组装,从单个聚合物链创建二维手性阿基米德螺旋纳米结构。在二维晶体和二维手性阿基米德螺旋纳米结构中获得的螺旋聚合物的结构参数是相同的,这表明聚合物的二级结构在两种二维纳米材料中保持不变。关于螺旋聚合物自组装成二维手性阿基米德螺旋纳米结构的这一发现使得能够制备在手性催化、分子识别和其他前沿应用中具有潜在应用的手性纳米结构。