Suppr超能文献

利用药物配给数据识别老年痴呆症患者中具有相似处方模式的群组。

Using Medication Dispensation Data to Identify Clusters with Similar Prescribing Patterns in Older Adults Living with Dementia.

作者信息

Emdin Abby, Stukel Therese A, Bethell Jennifer, Wang Xuesong, Iaboni Andrea, Bronskill Susan E

机构信息

Dalla Lana School of Public Health, University of Toronto, V1 06, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.

ICES, Toronto, ON, Canada.

出版信息

Drugs Aging. 2025 Sep 10. doi: 10.1007/s40266-025-01228-y.

Abstract

BACKGROUND AND OBJECTIVES

Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population. The objective of our study was to use clustering methods to determine whether common prescribing clusters exist in older adults newly identified as living with dementia in Ontario, Canada and to examine the association between individual clinical and demographic characteristics and those clusters.

METHODS

Data were derived from population-based health administrative databases, including medication dispensation data. The hierarchical clustering algorithm started with each individual and merged individuals with the most similar prescribing patterns into a group, continuing this process stepwise until only one cluster remained. The optimal number of clusters was selected through clinical review and fit statistics. We examined the association between individual characteristics and prescribing clusters using bivariate multinomial models.

RESULTS

In 99,046 individuals living with new dementia, we identified six prevalent clusters of individuals with common medication subclass patterns: higher dispensation of angiotensin-converting enzyme-specific cardiovascular (22.6% of the population), central nervous system-active (21.3%), hypothyroidism (22.9%), respiratory (3.9%), and angiotensin receptor blocker-specific cardiovascular (6.1%), as well as a group with lower dispensation of medications in general (23.1%). Specific demographic, clinical, and health-service-use characteristics were associated with assigned clusters.

CONCLUSIONS

Within individuals living with dementia, prescribing clusters reflected meaningful differences in clinical and demographic characteristics. The results suggest that applying clustering methods to pharmacological data may be useful in estimating complex comorbidity patterns to better describe a heterogeneous population of people living with dementia. Future studies could examine whether these clusters better predict health service use, disease progression, or medication-related adverse events compared with other measures.

摘要

背景与目的

患有痴呆症的老年人是一个异质性群体,这使得研究最佳药物管理具有挑战性。无监督机器学习是一组依赖未标记数据的计算方法,即算法本身在无需研究人员用已知结果标记数据的情况下发现模式。这些方法可能有助于我们更好地理解该人群中复杂的处方模式。我们研究的目的是使用聚类方法来确定在加拿大安大略省新确诊患有痴呆症的老年人中是否存在常见的处方聚类,并检查个体临床和人口统计学特征与这些聚类之间的关联。

方法

数据源自基于人群的健康管理数据库,包括药物配给数据。层次聚类算法从每个个体开始,将处方模式最相似的个体合并为一组,逐步继续这个过程,直到只剩下一个聚类。通过临床审查和拟合统计量选择最佳聚类数。我们使用双变量多项模型检查个体特征与处方聚类之间的关联。

结果

在99046名新患痴呆症的个体中,我们确定了六个具有常见药物亚类模式的个体聚类:血管紧张素转换酶特异性心血管药物配给量较高(占人群的22.6%)、中枢神经系统活性药物(21.3%)、甲状腺功能减退药物(22.9%)、呼吸系统药物(3.9%)以及血管紧张素受体阻滞剂特异性心血管药物(6.1%),还有一组总体药物配给量较低(23.1%)。特定的人口统计学、临床和卫生服务使用特征与分配的聚类相关。

结论

在患有痴呆症的个体中,处方聚类反映了临床和人口统计学特征的有意义差异。结果表明,将聚类方法应用于药理学数据可能有助于估计复杂的合并症模式,以更好地描述患有痴呆症的异质性人群。未来的研究可以检查与其他措施相比,这些聚类是否能更好地预测卫生服务使用、疾病进展或药物相关不良事件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验