Kanno Moriyuki, Taniike Toshiaki, Honma Itaru
Institute of multidisciplinary research for advanced materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
Magnetic Powder Metallurgy Research Center, National Institute of Advanced Industrial Science and Technology, 205-4 Sakurazaka, Moriyama, Nagoya 463-8560, Japan.
J Phys Chem Lett. 2025 Sep 18;16(37):9824-9829. doi: 10.1021/acs.jpclett.5c02225. Epub 2025 Sep 10.
High-entropy oxides (HEOs) are attracting significant attention owing to their compositional tunability and structural robustness. However, the identification of specific compositional combinations that yield a single-phase structure in HEOs remains unclear owing to the immense combinatorial complexity inherent in multielement systems. This study adopts a materials informatics approach that integrates experimental synthesis data with machine learning to identify key compositional factors enabling single-phase HEO formation via solid-state synthesis. This approach extracts compositional rules and constraints favoring the formation of homogeneous rock-salt or spinel phases. Applying these insights allowed the compositional space to be efficiently explored, leading to the successful synthesis of a single-phase cobalt-free HEO exhibiting high reversible capacity and outstanding cycling stability as a lithium-ion battery anode. These findings demonstrate the effectiveness of data-driven methodologies in rational material design and highlight the potential of HEOs as sustainable materials for next-generation energy storage technologies.
高熵氧化物(HEOs)因其成分可调性和结构稳定性而备受关注。然而,由于多元素系统固有的巨大组合复杂性,导致在高熵氧化物中产生单相结构的特定成分组合仍不明确。本研究采用材料信息学方法,将实验合成数据与机器学习相结合,以确定通过固态合成实现单相高熵氧化物形成的关键成分因素。该方法提取了有利于形成均匀岩盐或尖晶石相的成分规则和限制条件。应用这些见解能够有效地探索成分空间,从而成功合成了一种单相无钴高熵氧化物,作为锂离子电池负极表现出高可逆容量和出色的循环稳定性。这些发现证明了数据驱动方法在合理材料设计中的有效性,并突出了高熵氧化物作为下一代储能技术可持续材料的潜力。