Suppr超能文献

用于预测高熵氧化物中单相和多相形成的描述符:一种统一框架方法。

Descriptors for Predicting Single- and Multi-Phase Formation in High-Entropy Oxides: A Unified Framework Approach.

作者信息

Manchón-Gordón Alejandro F, Panadero-Medianero Paula, Blázquez Javier S

机构信息

Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, C. Américo Vespucio 49, 41092 Sevilla, Spain.

Departamento de Física de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla, Spain.

出版信息

Materials (Basel). 2025 Aug 18;18(16):3862. doi: 10.3390/ma18163862.

Abstract

High-entropy oxides, HEOs, represent a relatively new class of ceramic materials characterized by the incorporation of multiple cations, typically four or more, into a single-phase crystal structure. This extensive compositional flexibility allows for the introduction of specific chemical elements into a crystal lattice that would normally be unable to accommodate them, making it difficult to predict a priori their properties and crystal structures. Consequently, studying the phase stability of these single-phase materials presents significant challenges. This work examines the key parameters commonly employed to predict the stabilization of HEOs and introduces a unified framework for analyzing their stability. The proposed approach incorporates a normalized configurational entropy per mole of atoms and the relative volume occupied by cations into the mean atomic size deviation. By combining these parameters, the approach enables, as a first approximation, the identification of compositional ranges that favor the formation of single-phase and multi-phase HEO compounds with rock salt, spinel, fluorite, pyrochlore, and perovskite structures.

摘要

高熵氧化物(HEOs)是一类相对较新的陶瓷材料,其特征在于将多种阳离子(通常为四种或更多种)掺入单相晶体结构中。这种广泛的成分灵活性允许将特定化学元素引入通常无法容纳它们的晶格中,这使得很难先验地预测它们的性质和晶体结构。因此,研究这些单相材料的相稳定性面临重大挑战。这项工作研究了通常用于预测高熵氧化物稳定性的关键参数,并引入了一个统一的框架来分析它们的稳定性。所提出的方法将每摩尔原子的归一化构型熵和阳离子占据的相对体积纳入平均原子尺寸偏差中。通过结合这些参数,该方法作为一阶近似,能够识别有利于形成具有岩盐、尖晶石、萤石、烧绿石和钙钛矿结构的单相和多相高熵氧化物化合物的成分范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fab3/12387497/cdadd43fdd9e/materials-18-03862-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验