Suppr超能文献

利用英国生物银行队列中的机器学习预测严重心力衰竭和冠状动脉疾病的未来风险及预后。

Predicting the future risk and outcomes of severe heart failure and coronary artery disease with machine learning in the UK Biobank Cohort.

作者信息

Taha Karim, Ross Heather J, Peikari Mohammad, Mueller Brigitte, Fan Chun-Po S, Crowdy Edgar, Moayedi Yas, Billia Filio, Manlhiot Cedric

机构信息

Department of Medicine, The Red Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada.

Department of Pediatrics, The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America.

出版信息

PLoS One. 2025 Sep 10;20(9):e0329461. doi: 10.1371/journal.pone.0329461. eCollection 2025.

Abstract

BACKGROUND

In order to seriously impact the global burden of heart failure (HF) and coronary artery disease (CAD), identifying at-risk individuals as early as possible is vital. Risk calculator tools in wide clinical use today are informed by traditional statistical methods that have historically yielded only modest prediction accuracy.

METHODS

This study uses machine learning algorithms to generate predictions models for the development and progression of severe HF and CAD. Participants (~485,000 followed in the UK Biobank over 7 years) were stratified by cardiac status at the time of enrollment (asymptomatic, high-risk and affected); separate prediction models were built for each stratum. Participants were split between a training set (80%) and holdout dataset (20%), all performance metrics are reported for the holdout dataset.

RESULTS

Out of 6 machine learning algorithms screened, artificial neural networks (ANN) most successfully predicted future disease across the various strata (area under the curve: 0.77-0.86 for 10/12 models), results were very consistent between methodologies. Models trained using ANN showed excellent calibration in all strata and across the entire spectrum of risk (0.4-1.2% average observed/predicted difference across 10 deciles of risk). Key predictive features included age, frailty, adiposity, history of hypertension and diabetes, tobacco use and family history of heart disease and were consistent between models for HF and CAD.

CONCLUSIONS

When deployed as a patient-facing application, the prediction models presented here will be able to provide both user-specific predictions and simulate the effect of changes in lifestyle and of prophylaxis interventions, thus resulting in an individualized patient counselling and management tool.

摘要

背景

为了严重影响心力衰竭(HF)和冠状动脉疾病(CAD)的全球负担,尽早识别高危个体至关重要。当今广泛应用于临床的风险计算器工具是基于传统统计方法,而这些方法历来仅产生适度的预测准确性。

方法

本研究使用机器学习算法生成严重HF和CAD发生及进展的预测模型。参与者(约485,000人,在英国生物银行随访7年)在入组时按心脏状态分层(无症状、高危和患病);为每个分层建立单独的预测模型。参与者被分为训练集(80%)和保留数据集(20%),所有性能指标均针对保留数据集报告。

结果

在筛选的6种机器学习算法中,人工神经网络(ANN)在各分层中最成功地预测了未来疾病(10/12个模型的曲线下面积:0.77 - 0.86),不同方法的结果非常一致。使用ANN训练的模型在所有分层和整个风险范围内均显示出良好的校准(在10个风险十分位数中,平均观察/预测差异为0.4 - 1.2%)。关键预测特征包括年龄、虚弱、肥胖、高血压和糖尿病病史、吸烟以及心脏病家族史,并且在HF和CAD模型之间是一致的。

结论

当作为面向患者的应用程序部署时,本文提出的预测模型将能够提供针对用户的预测,并模拟生活方式改变和预防干预措施的效果,从而形成个性化的患者咨询和管理工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0729/12422514/6a3c1280465b/pone.0329461.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验