Cavallo Alessia, Köhler Richard M, Busch Johannes L, Habets Jeroen G V, Merk Timon, Zvarova Patricia, Vanhoecke Jojo, Binns Thomas S, Al-Fatly Bassam, de Almeida Marcelino Ana Luisa, Darcy Natasha, Schneider Gerd-Helge, Krause Patricia, Horn Andreas, Faust Katharina, Herz Damian M, Yttri Eric, Cagnan Hayriye, Kühn Andrea A, Neumann Wolf-Julian
Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
Sci Adv. 2025 Sep 12;11(37):eadx6849. doi: 10.1126/sciadv.adx6849. Epub 2025 Sep 10.
Subthalamic deep brain stimulation (STN-DBS) provides unprecedented spatiotemporal precision for the treatment of Parkinson's disease (PD), allowing for direct real-time state-specific adjustments. Inspired by findings from optogenetic stimulation in mice, we hypothesized that STN-DBS can mimic dopaminergic reinforcement of ongoing movement kinematics during stimulation. To investigate this hypothesis, we delivered DBS bursts during particularly fast and slow movements in 24 patients with PD. Our findings reveal that DBS during fast movements enhanced future movement speed more than DBS during slow movements, raising movement speed to the level of healthy controls. To understand which brain circuits mediate this neurophysiological mechanism, we investigated the behavioral effects using magnetic resonance imaging connectomics and motor cortex electrocorticography. Last, we demonstrate that machine learning-based brain signal decoding can be used to predict continuous movement speed for fully embedded state-dependent closed-loop algorithms. Our findings provide important evidence for reinforcement-based DBS circuit mechanisms that may inspire previously unexplored treatment avenues for dopaminergic disorders.
丘脑底核深部脑刺激(STN-DBS)为帕金森病(PD)的治疗提供了前所未有的时空精度,能够进行直接的实时状态特异性调整。受小鼠光遗传学刺激研究结果的启发,我们推测STN-DBS可以模拟刺激期间多巴胺能对正在进行的运动运动学的强化作用。为了验证这一假设,我们在24例帕金森病患者进行特别快速和缓慢运动时给予DBS脉冲。我们的研究结果表明,快速运动期间的DBS比缓慢运动期间的DBS更能提高未来的运动速度,使运动速度提高到健康对照的水平。为了了解哪些脑回路介导了这种神经生理机制,我们使用磁共振成像连接组学和运动皮质脑电描记术研究了行为效应。最后,我们证明基于机器学习的脑信号解码可用于预测完全嵌入式状态依赖闭环算法的连续运动速度。我们的研究结果为基于强化的DBS电路机制提供了重要证据,这可能会启发多巴胺能疾病以前未探索的治疗途径。