Silver David Haim
Remiza AI, Poughkeepsie, New York, United States of America.
PLoS One. 2025 Sep 10;20(9):e0331064. doi: 10.1371/journal.pone.0331064. eCollection 2025.
Hybrid entertainment formats combining competitive and comedic elements present opportunities to investigate factors driving audience engagement. I analyzed Taskmaster UK (2015-2023), a BAFTA-winning comedy panel show where comedians compete in creative tasks judged by a host, to quantify relationships between scoring mechanics, performer characteristics, and viewer ratings.
I analyzed 154 episodes encompassing 917 tasks performed by 90 contestants, with audience reception measured through 32,607 IMDb votes. To capture scoring dynamics while avoiding intercorrelated metrics, I employed a low-dimensional representation using mean (μ) and variance ([Formula: see text]) of score distributions. Additional methods included mixture modeling for rating distributions (tri-peak model: [Formula: see text][Formula: see text]), hierarchical clustering for performance patterns, and Random Forest regression. All p-values include False Discovery Rate correction.
Low-dimensional scoring representation showed no significant associations with IMDb ratings (μ: r = -0.012, p = 0.890; [Formula: see text]: r = -0.118, p = 0.179; combined R2 = 0.017, p = 0.698). Contestant age emerged as the strongest predictor (39.5% ± 2.1% feature importance). Sentiment analysis identified increased awkwardness over time ([Formula: see text], adjusted p = 0.0027). Clustering revealed five performance archetypes appearing consistently across series. Geometric analysis showed 38.9% (98/252) of mathematically possible scoring distributions occur in practice.
Competitive elements provide framework while audience engagement correlates with performer characteristics and emotional content. The low-dimensional scoring analysis eliminates methodological concerns about metric intercorrelation. These findings position Taskmaster UK as a quantifiable example where secondary mechanics enable but do not determine primary value.
结合竞争和喜剧元素的混合娱乐形式为研究驱动观众参与度的因素提供了机会。我分析了英国版《任务大师》(2015 - 2023年),这是一档获得英国电影和电视艺术学院奖的喜剧脱口秀节目,喜剧演员们在由主持人评判的创意任务中竞争,以量化评分机制、表演者特征和观众评分之间的关系。
我分析了154集节目,其中包含90名参赛者完成的917项任务,通过32,607条来自互联网电影数据库(IMDb)的投票来衡量观众接受度。为了在避免指标相互关联的同时捕捉评分动态,我采用了基于分数分布的均值(μ)和方差([公式:见原文])的低维表示。其他方法包括用于评分分布的混合建模(三峰模型:[公式:见原文][公式:见原文])、用于表现模式的层次聚类以及随机森林回归。所有p值均包含错误发现率校正。
低维评分表示与IMDb评分无显著关联(μ:r = -0.012,p = 0.890;[公式:见原文]:r = -0.118,p = 0.179;综合R² = 0.017,p = 0.698)。参赛者年龄成为最强预测因素(特征重要性为39.5% ± 2.1%)。情感分析表明,随着时间推移尴尬感增加([公式:见原文],校正后p = 0.0027)。聚类揭示了在各季中始终出现的五种表现原型。几何分析表明,在实际中出现了数学上可能的评分分布的38.9%(98/252)。
竞争元素提供了框架,而观众参与度与表演者特征和情感内容相关。低维评分分析消除了关于指标相互关联的方法学问题。这些发现将英国版《任务大师》定位为一个可量化的例子,其中次要机制促成但不决定主要价值。