Goya Stephanie, Greninger Alexander L
Department of Laboratory Medicine and Pathology, University of Washington Medical Center, 850 Republican St. S130, Seattle, WA 98109, USA.
Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, PO Box 19024, Seattle, WA 98109, USA.
Mol Biol Evol. 2025 Oct 1;42(10). doi: 10.1093/molbev/msaf217.
Human parainfluenza virus 2 (HPIV-2) and human parainfluenza virus 4 (HPIV-4) are significant but underappreciated respiratory pathogens, particularly among high-risk populations including children, the elderly, and immunocompromised individuals. In this study, we sequenced 101 HPIV-2 and HPIV-4 genomes from respiratory samples collected in western Washington State and performed comprehensive evolutionary analyses using both new and publicly available sequences. Phylogenetic and phylodynamic analyses revealed that both HPIV-2 and HPIV-4 evolve at significantly faster rates compared to the mumps virus, a reference human orthorubulavirus. Notably, while HPIV-2 demonstrated the highest evolutionary rates in the surface glycoprotein HN, consistent with humoral immune-driven selection, the innate immune antagonist V/P gene evolved fastest in HPIV-4. We identified a hypervariable region within the HPIV-4V/P protein (residues 35 to 75), which structural modeling placed in a loop overlapping a known interferon antagonism domain in other paramyxovirus V proteins, though HPIV-4 is functionally incompetent in this activity. Expanded phylogenetic analysis across the Paramyxoviridae family uncovered a striking evolutionary discordance: while the HN glycoprotein and L polymerase of HPIV-4 and its 2 closest bat-derived viruses clustered within the Orthorubulavirus genus, their nucleoprotein (N), phosphoprotein (P), matrix (M), and fusion (F) proteins formed a distinct lineage outside the Rubulavirinae subfamily. Together, these findings highlight the distinct evolutionary trajectories of HPIV-2 and HPIV-4, raise hypotheses around complex Paramyxoviridae zoonotic events including recombination-like patterns, and demonstrate limitations of current L protein-based taxonomic classification schemes.
人副流感病毒2型(HPIV - 2)和人副流感病毒4型(HPIV - 4)是重要但未得到充分重视的呼吸道病原体,尤其是在包括儿童、老年人和免疫功能低下个体在内的高危人群中。在本研究中,我们对从华盛顿州西部收集的呼吸道样本中的101个HPIV - 2和HPIV - 4基因组进行了测序,并使用新的和公开可用的序列进行了全面的进化分析。系统发育和系统动力学分析表明,与参考人正腮腺炎病毒腮腺炎病毒相比,HPIV - 2和HPIV - 4的进化速度明显更快。值得注意的是,虽然HPIV - 2在表面糖蛋白HN中表现出最高的进化速率,这与体液免疫驱动的选择一致,但先天免疫拮抗剂V/P基因在HPIV - 4中进化最快。我们在HPIV - 4 V/P蛋白(第35至75位氨基酸残基)中鉴定出一个高变区,结构建模显示该区域位于一个环中,与其他副粘病毒V蛋白中已知的干扰素拮抗结构域重叠,尽管HPIV - 4在该活性方面功能不全。对副粘病毒科进行的扩展系统发育分析揭示了一个惊人的进化不一致性:虽然HPIV - 4及其2种最接近的源自蝙蝠的病毒的HN糖蛋白和L聚合酶聚集在正腮腺炎病毒属内,但它们的核蛋白(N)、磷蛋白(P)、基质(M)和融合(F)蛋白在腮腺炎病毒亚科之外形成了一个独特的谱系。总之,这些发现突出了HPIV - 2和HPIV - 4不同的进化轨迹,围绕包括重组样模式在内的复杂副粘病毒科人畜共患病事件提出了假设,并证明了当前基于L蛋白的分类方案的局限性。