Suppr超能文献

基于质谱指纹图谱的基因本体论全基因组规模预测揭示了新的代谢基因功能。

Genome-scale prediction of gene ontology from mass fingerprints reveals new metabolic gene functions.

作者信息

Vavricka Christopher J, Mochizuki Masao, Yuzawa Satoshi, Murata Masahiro, Yoshida Takanobu, Watanabe Naoki, Nakatsui Masahiko, Ishii Jun, Hara Kiyotaka Y, Alper Hal S, Hasunuma Tomohisa, Kondo Akihiko, Araki Michihiro

机构信息

Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan.

Bacchus Bio Innovation, Kobe, Japan.

出版信息

Life Sci Alliance. 2025 Sep 10;8(11). doi: 10.26508/lsa.202403154. Print 2025 Nov.

Abstract

Mass-based fingerprinting can characterize microorganisms; however, expansion of these methods to predict specific gene functions is lacking. Therefore, mass fingerprinting was developed to functionally profile a yeast knockout library. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) fingerprints of 3,238 knockouts were digitized for correlation with gene ontology (GO). Random forests and support vector machine (SVM) algorithms assigned GO terms with average AUC values of 0.994 and 0.980, respectively. SVM was the best predictor with average true-positive and true-negative rates of 0.983 and 0.993, respectively. To test predictions of unknown gene functions, the dataset of uncharacterized yeast gene knockouts was evaluated based on SVM scores, and new functions were suggested for 28 corresponding genes. Metabolomics analysis of two knockouts (YDR215C and YLR122C) of uncharacterized genes predicted to be involved in methylation-related metabolism showed altered intracellular contents of methionine-related metabolites. Increased S-adenosylmethionine in YDR215C indicated that this strain shows potential as a chassis for bioproduction of methylated compounds. This study demonstrates that fingerprinting can generate large functional datasets for improved machine learning-based gene function prediction.

摘要

基于质量的指纹图谱可对微生物进行表征;然而,这些方法在预测特定基因功能方面的扩展尚显不足。因此,开发了质量指纹图谱来对酵母基因敲除文库进行功能分析。对3238个基因敲除株的基质辅助激光解吸/电离飞行时间(MALDI-TOF)指纹图谱进行数字化处理,以与基因本体论(GO)进行关联。随机森林算法和支持向量机(SVM)算法分别以平均0.994和0.980的曲线下面积(AUC)值分配GO术语。SVM是最佳预测器,平均真阳性率和真阴性率分别为0.983和0.993。为了测试对未知基因功能的预测,基于SVM分数对未表征的酵母基因敲除数据集进行了评估,并为28个相应基因提出了新功能。对预测参与甲基化相关代谢的两个未表征基因的基因敲除株(YDR215C和YLR122C)进行代谢组学分析,结果显示蛋氨酸相关代谢物的细胞内含量发生了变化。YDR215C中S-腺苷甲硫氨酸的增加表明该菌株具有作为甲基化化合物生物生产底盘的潜力。本研究表明,指纹图谱可生成大型功能数据集,以改进基于机器学习的基因功能预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788d/12423557/f7320202c7cf/LSA-2024-03154_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验