Suppr超能文献

使用纳米孔测序技术在基因中进行准确且快速的单核苷酸变异检测。

Accurate and rapid single nucleotide variation detection in gene using nanopore sequencing.

作者信息

Massaiu Ilaria, Valerio Vincenza, Rusconi Valentina, Bertolini Francesca, De Giorgi Donato, Myasoedova Veronika A, Poggio Paolo

机构信息

Centro Cardiologico Monzino IRCCS, Milan, Italy.

Department of Pharmacy, University of Naples "Federico II", Naples, Italy.

出版信息

Front Med (Lausanne). 2025 Aug 26;12:1620405. doi: 10.3389/fmed.2025.1620405. eCollection 2025.

Abstract

BACKGROUND

Genetic testing is essential for disease screening, diagnosis, prognosis, and pharmacotherapy guidance. Oxford Nanopore Technologies (ONT) offers a cost-effective platform for long-read sequencing, yet its routine use in clinical diagnostics remains under evaluation. We tested different nanopore sequencing pipelines aimed at accurately detecting single-nucleotide variants (SNV) in a gene locus spanning ⁓25 kb.

METHODS

As a proof of concept, was selected for its relevance to cardiovascular disease and suitable sequence structure. Twelve subjects were analyzed using different sequencing flow cells, basecalling models, and SNV calling algorithms. Sanger sequencing served as the reference for performance validation. Sequencing throughput per flow cell was also estimated.

RESULTS

The combination of super high accuracy (SUP) basecalling with Longshot variant calling demonstrated the highest performance across flow cells. MinION flow cell reached a perfect F1-score of 100%, while the more cost-effective Flongle flow cell remained a viable alternative (mean F1-score: 98.2% ± 4.2). Throughput analysis indicated that a single MinION flow cell could process up to 96 samples and ⁓40 long sequencing regions, whereas a Flongle flow cell could support sequencing of 96 samples and one long region.

CONCLUSION

The proposed nanopore-based SNV identification workflows may support the development of long-read, targeted gene panels, offering a promising tool for both diagnostic and discovery applications, particularly in multi-gene settings such as oncology and cardiology.

摘要

背景

基因检测对于疾病筛查、诊断、预后评估及药物治疗指导至关重要。牛津纳米孔技术公司(ONT)提供了一个具有成本效益的长读长测序平台,但其在临床诊断中的常规应用仍在评估中。我们测试了不同的纳米孔测序流程,旨在准确检测跨越约25 kb基因座中的单核苷酸变异(SNV)。

方法

作为概念验证,因其与心血管疾病的相关性及合适的序列结构而被选中。使用不同的测序流动槽、碱基识别模型和SNV识别算法对12名受试者进行了分析。桑格测序用作性能验证的参考。还估计了每个流动槽的测序通量。

结果

超高精度(SUP)碱基识别与Longshot变异识别相结合在各流动槽中表现出最高性能。MinION流动槽的F1分数达到了100%的完美值,而成本效益更高的Flongle流动槽仍是一个可行的选择(平均F1分数:98.2%±4.2)。通量分析表明,单个MinION流动槽最多可处理96个样本和约40个长测序区域,而Flongle流动槽可支持96个样本和一个长区域的测序。

结论

所提出的基于纳米孔的SNV识别工作流程可能支持长读长靶向基因检测板的开发,为诊断和发现应用提供了一个有前景的工具,特别是在肿瘤学和心脏病学等多基因环境中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a04/12417156/fdbc7794e108/fmed-12-1620405-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验