Suppr超能文献

长读测序在遗传性疾病分子诊断中的应用。

Long-read sequencing for molecular diagnostics in constitutional genetic disorders.

机构信息

Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Hum Mutat. 2022 Nov;43(11):1531-1544. doi: 10.1002/humu.24465. Epub 2022 Sep 18.

Abstract

Long-read sequencing (LRS) has been around for more than a decade, but widespread adoption of the technology has been slow due to the perceived high error rates and high sequencing cost. This is changing due to the recent advancements to produce highly accurate sequences and the reducing costs. LRS promises significant improvement over short read sequencing in four major areas: (1) better detection of structural variation (2) better resolution of highly repetitive or nonunique regions (3) accurate long-range haplotype phasing and (4) the detection of base modifications natively from the sequencing data. Several successful applications of LRS have demonstrated its ability to resolve molecular diagnoses where short-read sequencing fails to identify a cause. However, the argument for increased diagnostic yield from LRS remains to be validated. Larger cohort studies may be required to establish the realistic boundaries of LRS's clinical utility and analytical validity, as well as the development of standards for clinical applications. We discuss the limitations of the current standard of care, and contrast with the applications and advantages of two major LRS platforms, PacBio and Oxford Nanopore, for molecular diagnostics of constitutional disorders, and present a critical argument about the potential of LRS in diagnostic settings.

摘要

长读测序(LRS)已经存在了十多年,但由于认为错误率高和测序成本高,该技术的广泛采用一直较为缓慢。最近在产生高度准确序列和降低成本方面的进展正在改变这种情况。LRS 在四个主要领域承诺对短读测序有重大改进:(1)更好地检测结构变异;(2)更好地解析高度重复或非独特区域;(3)准确的长程单倍型相位;以及(4)从测序数据中直接检测碱基修饰。LRS 的几个成功应用已经证明了它在短读测序无法识别病因的情况下解决分子诊断的能力。然而,LRS 增加诊断产量的论点仍有待验证。可能需要更大的队列研究来确定 LRS 的临床实用性和分析有效性的实际界限,以及制定临床应用的标准。我们讨论了当前护理标准的局限性,并将其与 PacBio 和 Oxford Nanopore 这两种主要 LRS 平台在结构紊乱的分子诊断中的应用和优势进行对比,对 LRS 在诊断环境中的潜力提出了批判性的看法。

相似文献

1
Long-read sequencing for molecular diagnostics in constitutional genetic disorders.
Hum Mutat. 2022 Nov;43(11):1531-1544. doi: 10.1002/humu.24465. Epub 2022 Sep 18.
2
Unraveling metagenomics through long-read sequencing: a comprehensive review.
J Transl Med. 2024 Jan 28;22(1):111. doi: 10.1186/s12967-024-04917-1.
3
Comprehensive de novo mutation discovery with HiFi long-read sequencing.
Genome Med. 2023 May 8;15(1):34. doi: 10.1186/s13073-023-01183-6.
4
Long-read sequencing improves diagnostic rate in neuromuscular disorders.
Acta Myol. 2023 Dec 20;42(4):123-128. doi: 10.36185/2532-1900-394. eCollection 2023.
5
Advancing long-read nanopore genome assembly and accurate variant calling for rare disease detection.
medRxiv. 2024 Aug 22:2024.08.22.24312327. doi: 10.1101/2024.08.22.24312327.
6
Genomics in the long-read sequencing era.
Trends Genet. 2023 Sep;39(9):649-671. doi: 10.1016/j.tig.2023.04.006. Epub 2023 May 23.
7
Oxford Nanopore MinION Sequencing and Genome Assembly.
Genomics Proteomics Bioinformatics. 2016 Oct;14(5):265-279. doi: 10.1016/j.gpb.2016.05.004. Epub 2016 Sep 17.
8
Long-Read DNA Sequencing: Recent Advances and Remaining Challenges.
Annu Rev Genomics Hum Genet. 2023 Aug 25;24:109-132. doi: 10.1146/annurev-genom-101722-103045. Epub 2023 Apr 19.
9
Targeted long-read sequencing identifies missing disease-causing variation.
Am J Hum Genet. 2021 Aug 5;108(8):1436-1449. doi: 10.1016/j.ajhg.2021.06.006. Epub 2021 Jul 2.
10
How do emerging long-read sequencing technologies function in transforming the plant pathology research landscape?
Plant Mol Biol. 2022 Dec;110(6):469-484. doi: 10.1007/s11103-022-01305-5. Epub 2022 Aug 13.

引用本文的文献

1
Accurate and rapid single nucleotide variation detection in gene using nanopore sequencing.
Front Med (Lausanne). 2025 Aug 26;12:1620405. doi: 10.3389/fmed.2025.1620405. eCollection 2025.
2
Identification and Characterization of Chromothripsis by Optical Genome Mapping.
Methods Mol Biol. 2025;2968:173-190. doi: 10.1007/978-1-0716-4750-9_10.
3
Long-Read Sequencing and Structural Variant Detection: Unlocking the Hidden Genome in Rare Genetic Disorders.
Diagnostics (Basel). 2025 Jul 17;15(14):1803. doi: 10.3390/diagnostics15141803.
8
Long-Read Sequencing: The Third Generation of Diagnostic Testing for Dystonia.
Mov Disord. 2025 Jun;40(6):1009-1019. doi: 10.1002/mds.30208. Epub 2025 Apr 23.
9
Evolution of genome-wide methylation profiling technologies.
Genome Res. 2025 Apr 14;35(4):572-582. doi: 10.1101/gr.278407.123.
10
Analytical validation of germline small variant detection using long-read HiFi genome sequencing.
Genome Res. 2025 Jun 2;35(6):1391-1399. doi: 10.1101/gr.278836.123.

本文引用的文献

2
Targeted long-read sequencing identifies missing pathogenic variants in unsolved Werner syndrome cases.
J Med Genet. 2022 May 9;59(11):1087-94. doi: 10.1136/jmedgenet-2022-108485.
3
Clinical implementation of RNA sequencing for Mendelian disease diagnostics.
Genome Med. 2022 Apr 5;14(1):38. doi: 10.1186/s13073-022-01019-9.
4
Accelerated identification of disease-causing variants with ultra-rapid nanopore genome sequencing.
Nat Biotechnol. 2022 Jul;40(7):1035-1041. doi: 10.1038/s41587-022-01221-5. Epub 2022 Mar 28.
5
Genomic answers for children: Dynamic analyses of >1000 pediatric rare disease genomes.
Genet Med. 2022 Jun;24(6):1336-1348. doi: 10.1016/j.gim.2022.02.007. Epub 2022 Mar 16.
9
Ultrarapid Nanopore Genome Sequencing in a Critical Care Setting.
N Engl J Med. 2022 Feb 17;386(7):700-702. doi: 10.1056/NEJMc2112090. Epub 2022 Jan 12.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验