Suppr超能文献

使用U-Net增强摩洛哥的5天颗粒物(PM10)预报:一种深度学习方法。

Enhancing 5-Day Particulate Matter (PM10) Forecasts in Morocco Using U-Net: A Deep Learning Approach.

作者信息

Houdou Anass, Khomsi Kenza, Delle Monache Luca, Hu Weiming, Boutayeb Saber, Belyamani Lahcen, Abdulla Fayez, El Badisy Imad, Al-Delaimy Wael K, Khalis Mohamed

机构信息

Mohammed VI International School of Public Health, Mohammed VI University of Sciences and Health, Casablanca, Morocco.

Department of Public Health and Clinical Research, Mohammed VI Center for Research and Innovation, Rabat, Morocco.

出版信息

Atmos Res. 2026 Jan;328. doi: 10.1016/j.atmosres.2025.108439. Epub 2025 Aug 21.

Abstract

Accurately predicting particulate matter is crucial for preventing health risks and protecting public health. This study improves the accuracy of particulate matter forecasts over Morocco for the next five days using a U-Net-based deep learning model, marking the first work of its kind in the Middle East and North Africa (MENA) region. The U-Net model was used to post-process and improve forecasts from the Copernicus Atmosphere Monitoring Service (CAMS), with reanalysis data from CAMS serving as a reference to guide the model's learning. The U-Net architecture was modified to predict outputs at a resolution different from the inputs, eliminating the need for interpolation and preserving critical spatial details. The results demonstrated significant improvements over two baselines-CAMS forecasts and the Analog Ensemble model (AnEn)-by enhancing metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Coefficient of Determination ( ), Index of Agreement (IOA), and biases, particularly in regions prone to dust storms, during the period prior to the CAMS forecast upgrade in mid-2023. In the second half of 2023, U-Net continued to improve predictions; however, the effect of the upgrade cycle became evident in its errors. This highlights the importance of retraining U-Net with updated data as it becomes available to maintain its reliability in operational forecasting systems. U-Net also proved effective in capturing particulate pollution, providing reliable predictions for values up to . These findings underscore U-Net's potential for operational forecasting, supporting accurate early warnings to mitigate the health and environmental impacts of pollution.

摘要

准确预测颗粒物对于预防健康风险和保护公众健康至关重要。本研究使用基于U-Net的深度学习模型提高了摩洛哥未来五天颗粒物预报的准确性,这是中东和北非(MENA)地区同类研究中的首个工作。U-Net模型用于对哥白尼大气监测服务(CAMS)的预报进行后处理和改进,CAMS的再分析数据作为参考来指导模型学习。对U-Net架构进行了修改,以预测与输入分辨率不同的输出,从而无需进行插值并保留关键的空间细节。结果表明,与两个基线——CAMS预报和相似集合模型(AnEn)相比,在2023年年中CAMS预报升级之前的时间段内,通过提高平均绝对误差(MAE)、均方根误差(RMSE)、决定系数( )、一致性指数(IOA)和偏差等指标,有了显著改进,特别是在容易发生沙尘暴的地区。在2023年下半年,U-Net继续改进预测;然而,升级周期的影响在其误差中变得明显。这凸显了在有可用更新数据时用其对U-Net进行重新训练的重要性,以保持其在业务预报系统中的可靠性。U-Net在捕捉颗粒物污染方面也被证明是有效的,能够为高达 的值提供可靠预测。这些发现强调了U-Net在业务预报中的潜力,支持准确的早期预警,以减轻污染对健康和环境的影响。

相似文献

本文引用的文献

10
Environmental and Health Impacts of Air Pollution: A Review.空气污染的环境与健康影响:综述。
Front Public Health. 2020 Feb 20;8:14. doi: 10.3389/fpubh.2020.00014. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验