Song Guojie, Azad Salauddin Al, Hu Wenhao, Madadi Meysam, Rahman Ashfaque, Sun Chihe, Sun Fubao
Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
Department of Biological Data Science, Arizona State University, Tempe, AZ 85281, USA.
Bioresour Technol. 2026 Jan;439:133308. doi: 10.1016/j.biortech.2025.133308. Epub 2025 Sep 9.
Organosolv pretreatment has emerged as a highly effective strategy for deconstructing lignocellulose compactness, enabling enhanced enzymatic hydrolysis and facilitating the downstream production of valuable biochemicals. This study systematically investigates the effects of AlCl-catalyzed organosolv pretreatment using ethanol, ethylene glycol, and 1,4-butanediol (1,4-BDO) on LCB's fractionation efficiency, enzymatic hydrolysis, lignin structural alteration, and furfural production. Results showed that the AlCl/1,4-BDO system with stronger solvation achieved superior delignification (81.7 %), hemicellulose removal (93.0 %), and cellulose retention (90.3 %) at 120 °C, outperforming the other two systems. Theoretical calculations revealed that AlCl/1,4-BDO exhibited higher total energy density for lignin-carbohydrate complexes (-8692.4 kcal/mol) and more stable hydrogen bonds, facilitating solvent-biomass interactions and promoting efficient component fractionation. Lignin structural characterization verified that organic solvents can graft and stabilize reactive intermediates, obtain a high purity, and preserve β-O-4 linkages, especially in the AlCl/1,4-BDO system yielding lignin enriched with more aliphatic and phenolic hydroxyl groups. Furthermore, due to the enhanced substrate's pore enlargement and increased surface area in AlCl/1,4-BDO pretreatment, the pretreated substrates achieved the highest glucose yield after enzymolysis. Additionally, the AlCl/1,4-BDO system achieved a great furfural yield, attributed to selective adsorption/desorption and its lowest total energy (-9969.6 kcal/mol) with minimal torsion energy (-1.6 kcal/mol), reflecting its stability and reduced side reactions during conversion. The combined experimental and simulation-based approach provides valuable mechanistic insights and offers a theoretical foundation for enhancing the efficiency of organosolv pretreatment in lignocellulose biorefinery applications.
有机溶剂预处理已成为一种高效的策略,用于解构木质纤维素的致密结构,提高酶解效率,并促进有价值生物化学品的下游生产。本研究系统地研究了AlCl催化的使用乙醇、乙二醇和1,4-丁二醇(1,4-BDO)的有机溶剂预处理对木质纤维素生物质(LCB)的分级效率、酶解、木质素结构改变和糠醛生成的影响。结果表明,具有更强溶剂化作用的AlCl/1,4-BDO体系在120℃时实现了优异的脱木质素率(81.7%)、半纤维素去除率(93.0%)和纤维素保留率(90.3%),优于其他两个体系。理论计算表明,AlCl/1,4-BDO对木质素-碳水化合物复合物表现出更高的总能密度(-8692.4 kcal/mol)和更稳定的氢键,促进了溶剂与生物质的相互作用并推动了高效的组分分级。木质素结构表征证实,有机溶剂可以接枝并稳定反应中间体,获得高纯度,并保留β-O-4键,特别是在AlCl/1,4-BDO体系中,生成的木质素富含更多的脂肪族和酚羟基。此外,由于AlCl/1,4-BDO预处理中底物的孔隙扩大和表面积增加,预处理后的底物在酶解后获得了最高的葡萄糖产率。此外,AlCl/1,4-BDO体系实现了较高的糠醛产率,这归因于选择性吸附/解吸及其最低的总能(-9969.6 kcal/mol)和最小的扭转能(-1.6 kcal/mol),反映了其在转化过程中的稳定性和减少的副反应。基于实验和模拟相结合的方法提供了有价值的机理见解,并为提高有机溶剂预处理在木质纤维素生物炼制应用中的效率提供了理论基础。