Suppr超能文献

人工智能在上消化道诊断中的应用

Artificial Intelligence in Upper Gastrointestinal Diagnosis.

作者信息

Quek Sabrina Xin Zi, Ho Khek Yu

机构信息

Division of Gastroenterology and Hepatology, Department of Medicine, National University of Singapore, Singapore.

Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore.

出版信息

Korean J Helicobacter Up Gastrointest Res. 2025 Sep;25(3):251-260. doi: 10.7704/kjhugr.2025.0024. Epub 2025 Sep 1.

Abstract

Artificial intelligence (AI) has revolutionized upper gastrointestinal (GI) endoscopy by enhancing the detection, characterization, and management of GI diseases. In this review, we explore the transformative role of AI technologies, including machine learning and deep learning, in improving diagnostic accuracy and streamlining clinical workflows. AI systems such as convolutional neural networks have shown remarkable potential for identifying subtle lesions, assessing tumor margins, and reducing interobserver variability. By providing real-time decision-making support, AI minimizes unnecessary biopsies and improves patient outcomes. We also explore the applications of AI in detecting precancerous conditions such as Barrett's esophagus, atrophic gastritis, and gastric intestinal metaplasia, as well as its role in guiding therapy for early gastric cancer. Non-image-based AI tools such as Raman spectroscopy complement traditional imaging by offering molecular-level insights for real-time tissue characterization. Despite its promise, the adoption of AI in endoscopy faces challenges, including the need for robust validation, user-centric design, and targeted training for endoscopists. Concerns regarding overreliance and deskilling underscore the importance of balancing AI integration with the preservation of clinical expertise. Lastly, we examine the future of AI in upper GI diagnosis and how image-based and non-image-based AI technologies can be integrated to enable comprehensive diagnosis and personalized therapeutic planning. By addressing current limitations and fostering collaboration between clinicians and technologists, AI has the potential to redefine the standards of care for upper GI diagnosis and treatment.

摘要

人工智能(AI)通过加强胃肠道(GI)疾病的检测、特征描述和管理,彻底改变了上消化道内镜检查。在本综述中,我们探讨了人工智能技术,包括机器学习和深度学习,在提高诊断准确性和简化临床工作流程方面的变革性作用。卷积神经网络等人工智能系统在识别细微病变、评估肿瘤边缘和减少观察者间差异方面显示出显著潜力。通过提供实时决策支持,人工智能最大限度地减少了不必要的活检,并改善了患者预后。我们还探讨了人工智能在检测癌前病变,如巴雷特食管、萎缩性胃炎和胃化生方面的应用,以及它在指导早期胃癌治疗中的作用。拉曼光谱等基于非图像的人工智能工具通过提供分子水平的见解以进行实时组织特征描述,对传统成像起到补充作用。尽管人工智能前景广阔,但在内镜检查中的应用仍面临挑战,包括需要进行有力验证、以用户为中心的设计以及针对内镜医师的定向培训。对过度依赖和技能退化的担忧凸显了在保留临床专业知识的同时平衡人工智能整合的重要性。最后,我们研究了人工智能在上消化道诊断中的未来,以及基于图像和非图像的人工智能技术如何整合以实现全面诊断和个性化治疗规划。通过解决当前的局限性并促进临床医生和技术专家之间的合作,人工智能有潜力重新定义上消化道诊断和治疗的护理标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30fe/12425672/cf7b05a97fe9/kjhugr-2025-0024f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验