Suppr超能文献

基于人工智能的系统在食管胃十二指肠镜检查期间进行实时高质量照片记录的评估。

Evaluation of an artificial intelligence-based system for real-time high-quality photodocumentation during esophagogastroduodenoscopy.

作者信息

Ahn Byeong Yun, Lee Junwoo, Seol Jeonga, Kim Ji Yoon, Chung Hyunsoo

机构信息

Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.

Prevenotics Inc., Seoul, Korea.

出版信息

Sci Rep. 2025 Feb 8;15(1):4693. doi: 10.1038/s41598-024-83721-9.

Abstract

Complete and high-quality photodocumentation in esophagoduodenogastroscopy (EGD) is essential for accurately diagnosing upper gastrointestinal diseases by reducing blind spot rates. Automated Photodocumentation Task (APT), an artificial intelligence-based system for real-time photodocumentation during EGD, was developed to assist endoscopists in focusing more on the observation rather than repetitive capturing tasks. This study aimed to evaluate the completeness and quality of APT's photodocumentation compared to endoscopists. The dataset comprised 37 EGD videos recorded at Seoul National University Hospital between March and June 2023. Virtual endoscopy was conducted by seven endoscopists and APT, capturing 11 anatomical landmarks from the videos. The primary endpoints were the completeness of capturing landmarks and the quality of the images. APT achieved an average accuracy of 98.16% in capturing landmarks. Compared to that of endoscopists, APT demonstrated similar completeness in photodocumentation (87.72% vs. 85.75%, P = .0.258), and the combined photodocumentation of endoscopists and APT reached higher completeness (91.89% vs. 85.75%, P < .0.001). APT captured images with higher mean opinion scores than those of endoscopists (3.88 vs. 3.41, P < .0.001). In conclusion, APT provides clear, high-quality endoscopic images while minimizing blind spots during EGD in real-time.

摘要

在食管十二指肠胃镜检查(EGD)中,完整且高质量的图像记录对于降低盲点率从而准确诊断上消化道疾病至关重要。自动图像记录任务(APT)是一种基于人工智能的系统,用于在EGD过程中进行实时图像记录,旨在帮助内镜医师将更多精力集中在观察上,而非重复性的拍摄任务。本研究旨在评估与内镜医师相比,APT图像记录的完整性和质量。数据集包括2023年3月至6月在首尔国立大学医院录制的37段EGD视频。由7名内镜医师和APT进行虚拟内镜检查,从视频中捕捉11个解剖标志。主要终点是标志捕捉的完整性和图像质量。APT在捕捉标志方面的平均准确率达到98.16%。与内镜医师相比,APT在图像记录方面表现出相似的完整性(87.72%对85.75%,P = 0.258),内镜医师和APT的联合图像记录达到了更高的完整性(91.89%对85.75%,P < 0.001)。APT捕捉的图像平均意见得分高于内镜医师(3.88对3.41,P < 0.001)。总之,APT在EGD实时过程中提供清晰、高质量的内镜图像,同时将盲点最小化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47c7/11806067/d845d4c6fc70/41598_2024_83721_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验