Suppr超能文献

吩嗪通过作用于拓扑异构酶IV来影响微生物群落动态。

Phenazines contribute to microbiome dynamics by targeting topoisomerase IV.

作者信息

Zhou Yaqi, Wang Hongkai, Sun Jiaxin, Wicaksono Wisnu Adi, Liu Chao, He Yinghao, Qin Yuxuan, Berg Gabriele, Li Lei, Lin Houwen, Chai Yunrong, Bai Yang, Ma Zhonghua, Cernava Tomislav, Chen Yun

机构信息

State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.

Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.

出版信息

Nat Microbiol. 2025 Sep 11. doi: 10.1038/s41564-025-02118-0.

Abstract

Phenazines are highly prevalent, natural bioactive substances secreted by microbes. However, their mode of action and potential involvement in shaping microbiomes remain elusive. Here we performed a comprehensive analysis of over 1.35 million bacterial genomes to identify phenazine-producing bacteria distributed across 193 species in 34 families. Analysis of rhizosphere microbiome and public rhizosphere metagenomic datasets revealed that phenazines could shape the microbial community by inhibiting Gram-positive bacteria, which was verified by pairwise interaction assays using Phenazine-1-carboxamide (PCN)-producing Pseudomonas chlororaphis. PCN induced DNA damage in Bacillus subtilis, a model Gram-positive target, where it directly bound to the bacterial topoisomerase IV, inhibiting its decatenation activity and leading to cell death. A two-species consortium of phenazine-producing Pseudomonas and resistant B. subtilis exhibited superior synergistic activity in preventing Fusarium crown rot in wheat plants. This work advances our understanding of a prevalent microbial interaction and its potential for biocontrol.

摘要

吩嗪是微生物分泌的高度普遍的天然生物活性物质。然而,它们的作用方式以及在塑造微生物群落中的潜在作用仍不清楚。在这里,我们对超过135万个细菌基因组进行了全面分析,以鉴定分布在34个科的193个物种中的吩嗪产生菌。对根际微生物群落和公共根际宏基因组数据集的分析表明,吩嗪可以通过抑制革兰氏阳性菌来塑造微生物群落,这通过使用产生吩嗪-1-甲酰胺(PCN)的绿针假单胞菌进行的成对相互作用试验得到了验证。PCN在模式革兰氏阳性靶标枯草芽孢杆菌中诱导DNA损伤,它直接与细菌拓扑异构酶IV结合,抑制其解连环活性并导致细胞死亡。产生吩嗪的假单胞菌和抗性枯草芽孢杆菌的两物种联合体在预防小麦植株的镰刀菌冠腐病方面表现出优异的协同活性。这项工作推进了我们对一种普遍的微生物相互作用及其生物防治潜力的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验