Wade Jack, Štrancar Nina, Fernández-Quintero Monica L, Siebenhaar Suzana, Jansen Tom, Meier Edward P W, Jenkins Timothy P, Bjørn Sara P, Nguyen Giang T T, Lomonte Bruno, Gutiérrez José Maria, Sørensen Christoffer V, Loeffler Johannes R, Paul Arijit, Tulika Tulika, Arnsdorf Johnny, Schoffelen Sanne, Lundquist Emil V S, Sørensen Jennifer, Ward Andrew B, Voldborg Bjørn G, Bohn Markus-Frederik, Rivera-de-Torre Esperanza, Morth J Preben, Laustsen Andreas H
Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark.
Center for Molecular Biosciences Innsbruck, Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria.
MAbs. 2025 Dec;17(1):2553624. doi: 10.1080/19420862.2025.2553624. Epub 2025 Sep 11.
Antibodies that bind in a pH-dependent manner to their antigens show promise for enhanced neutralization potency and blocking capacity against extracellular targets. However, because the mechanisms governing pH-dependent antigen binding remain poorly understood, engineering approaches are often limited to incorporating histidine residues in the antibody complementarity-determining regions. Here, we use a panel of human monoclonal antibodies with neutralizing activity to long-chain α-neurotoxins (LNTxs) to investigate pH-dependent antigen binding. The antibodies vary in their light chains but have conserved histidine residues in their variable domains, allowing us to explore how other residues may affect pH dependence. Comparative structural and molecular dynamics studies between two antibodies with and without pH-dependent antigen-binding properties reveal that both antibodies neutralize LNTxs by mimicking LNTx-receptor interactions through their heavy chains. We hypothesize that part of the pH-dependency can be controlled by the light chain through modulation of water access to residues at the heavy-light-chain interface. We show that pH-dependent antigen-binding properties can be introduced into monoclonal antibodies through the substitution of selected residues at the heavy-light-chain interface. Specifically, we replaced tyrosine residues in the light chain with small polar and apolar amino acid residues in a structurally related anti-LNTx antibody with limited inherent pH-dependent antigen-binding properties, and found that these smaller substitutions enhanced pH-dependence more effectively than histidine substitutions alone. Our findings suggest a strategy for engineering pH-dependent antigen binding in antibodies that goes beyond the exclusive use of histidine doping.
以pH依赖方式与其抗原结合的抗体,在增强对细胞外靶点的中和效力和阻断能力方面显示出前景。然而,由于pH依赖的抗原结合机制仍知之甚少,工程方法通常局限于在抗体互补决定区引入组氨酸残基。在此,我们使用一组对长链α-神经毒素(LNTxs)具有中和活性的人单克隆抗体,来研究pH依赖的抗原结合。这些抗体的轻链各不相同,但在其可变区具有保守的组氨酸残基,这使我们能够探索其他残基如何影响pH依赖性。对两种具有和不具有pH依赖抗原结合特性的抗体进行的比较结构和分子动力学研究表明,两种抗体均通过其重链模拟LNTx-受体相互作用来中和LNTxs。我们推测,pH依赖性的部分原因可以由轻链通过调节重链-轻链界面残基的水可及性来控制。我们表明,通过替换重链-轻链界面的选定残基,可以将pH依赖的抗原结合特性引入单克隆抗体中。具体而言,我们在一种固有pH依赖抗原结合特性有限的结构相关抗LNTx抗体中,将轻链中的酪氨酸残基替换为小的极性和非极性氨基酸残基,发现这些较小的替换比单独的组氨酸替换更有效地增强了pH依赖性。我们的研究结果提出了一种在抗体中工程化pH依赖抗原结合的策略,该策略超越了单纯使用组氨酸掺杂的方法。