Suppr超能文献

孟加拉国污水和地表水中分离出的细菌的分子特征及抗菌谱分析

Molecular Characterization and Antibiogram Profiling of Bacteria Isolated From Sewage and Surface Water in Bangladesh.

作者信息

Polash Md Arif-Uz-Zaman, Islam Md Shamsul, Zahan Nusrat, Sarker Subir, Haque Md Hakimul

机构信息

Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh.

Biomedical Sciences & Molecular Biology, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia.

出版信息

Scientifica (Cairo). 2025 Sep 3;2025:1848058. doi: 10.1155/sci5/1848058. eCollection 2025.

Abstract

The global rise of antibiotic-resistant bacteria presents a major threat to public health, complicating the treatment of bacterial infections. This study aimed to identify bacterial pathogens in surface water and sewage samples from the University of Rajshahi, Bangladesh, and evaluate their antibiotic susceptibility. A total of 60 water samples were collected from four distinct locations and analyzed using a combination of culture-based techniques, conventional PCR, and advanced molecular techniques (Sanger sequencing). Eight prevalent bacterial species were identified: (21.6%), (15%), (13.3%), (8.3%), (8.3%), (6.6%), (5%), and (5%). The 16S rRNA gene sequencing confirmed the identity of the bacterial isolates, and the phylogenetic tree analysis revealed distinct genetic divergence of the Bangladeshi isolates compared to global reference strains. Antibiotic susceptibility against 10 commonly used antibiotics was performed using the Kirby-Bauer disk diffusion method, revealing a varying degree of resistance patterns. All isolated bacteria exhibited susceptibility to imipenem, levofloxacin, amikacin, and azithromycin, while significant resistance was noted against cefradine, amoxicillin/clavulanic acid, cefuroxime, and ceftriaxone. Notably, 44% of the bacterial isolates were identified as multi-drug-resistant (MDR), with (69.23%), (62.5%), and (55.55%) exhibiting the highest resistance. In contrast, and exhibited no MDR traits. The multiple antibiotic resistance (MAR) index ranged from 0.30 to 0.60 among the isolates. These findings highlight the significant contamination of water sources with antibiotic-resistant bacteria, underscoring the urgent need for effective management practices to mitigate public health risks.

摘要

抗生素耐药细菌在全球范围内的增加对公众健康构成了重大威胁,使细菌感染的治疗变得更加复杂。本研究旨在鉴定孟加拉国拉杰沙希大学地表水和污水样本中的细菌病原体,并评估它们的抗生素敏感性。总共从四个不同地点采集了60份水样,并结合基于培养的技术、传统PCR和先进分子技术(桑格测序)进行分析。鉴定出了8种常见细菌:(21.6%),(15%),(13.3%),(8.3%),(8.3%),(6.6%),(5%)和(5%)。16S rRNA基因测序确认了细菌分离株的身份,系统发育树分析显示,与全球参考菌株相比,孟加拉国分离株存在明显的遗传差异。使用 Kirby-Bauer 纸片扩散法对10种常用抗生素进行了抗生素敏感性测试,结果显示出不同程度的耐药模式。所有分离出的细菌对亚胺培南、左氧氟沙星、阿米卡星和阿奇霉素均敏感,而对头孢拉定、阿莫西林/克拉维酸、头孢呋辛和头孢曲松则表现出显著耐药性。值得注意的是,44%的细菌分离株被鉴定为多重耐药(MDR),其中(69.23%)、(62.5%)和(55.55%)表现出最高耐药性。相比之下,和没有表现出多重耐药特征。分离株的多重抗生素耐药(MAR)指数在0.30至0.60之间。这些发现突出了水源受到抗生素耐药细菌的严重污染,强调了采取有效管理措施以降低公共卫生风险的迫切需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fafe/12422855/b71c02246d72/SCIENTIFICA2025-1848058.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验