Löffler Ann-Kathrin, Huber Annika, Olayioye Monilola A, Kontermann Roland E, Seifert Oliver
Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany.
Front Immunol. 2025 Aug 27;16:1642454. doi: 10.3389/fimmu.2025.1642454. eCollection 2025.
Trispecific antibodies have emerged as molecules for enhanced cancer immunotherapy by addressing the complexity of cancer cell biology and anti-cancer immune responses. Here, we present a novel approach to generate trispecific antibodies based on the previously developed eIg technology. These trispecific antibodies comprise one Fab and two eFab moieties, fused to obtain an asymmetric eFab-eIg molecule. The design principle employs two different eFab building blocks, characterized by divergent arrangements of heterodimerizing hetEHD2 domains. Specifically, the first (inner) eFab arm comprises the hetEHD2-1 domain in the heavy chain and the corresponding hetEHD2-2 domain in one of the light chains, while in the second eFab (outer) this arrangement is reversed. The feasibility of this approach was demonstrated for a trispecific eFab-eIg T-cell engager (TCE) targeting HER2, HER3, and CD3. Importantly, the trispecific TCE retained binding activity for all three antigens and was capable of recruiting T-cells to HER2 and/or HER3-expressing cancer cells and mediating effective cancer cell killing, as shown in 2D and 3D model systems. Due to the modular architecture, this approach should be suitable to generate trispecific antibodies of any specificity and for a multitude of applications.
三特异性抗体作为一种分子,通过解决癌细胞生物学和抗癌免疫反应的复杂性,已成为增强癌症免疫治疗的手段。在此,我们提出了一种基于先前开发的eIg技术生成三特异性抗体的新方法。这些三特异性抗体包含一个Fab和两个eFab部分,通过融合获得一个不对称的eFab-eIg分子。设计原理采用两种不同的eFab构建模块,其特征在于异源二聚化hetEHD2结构域的不同排列方式。具体而言,第一个(内部)eFab臂在重链中包含hetEHD2-1结构域,在其中一条轻链中包含相应的hetEHD2-2结构域,而在第二个eFab(外部)中这种排列方式则相反。针对一种靶向HER2、HER3和CD3的三特异性eFab-eIg T细胞衔接子(TCE),证明了该方法的可行性。重要的是,三特异性TCE对所有三种抗原均保留结合活性,并且能够将T细胞募集到表达HER2和/或HER3的癌细胞,并介导有效的癌细胞杀伤,如在二维和三维模型系统中所示。由于其模块化结构,该方法应适用于生成任何特异性的三特异性抗体,并适用于多种应用。