Ahmed Hanya, Flavier Jona Angelica, Higgs Victor
Department of Research and Development, Applied Nanodetectors Ltd., London N5 2EF, United Kingdom.
J Biol Methods. 2025 Jul 11;12(3):e99010063. doi: 10.14440/jbm.2024.0142. eCollection 2025.
Asthma presents significant diagnostic and therapeutic challenges, impacting millions and posing a substantial burden on healthcare systems, particularly in the United Kingdom, where it afflicts roughly 5.4 million individuals. Severe asthma, incurring over 50% of total expenditures, tends to lead to frequent exacerbations and preventable emergency admissions. Traditional diagnostic methods, primarily based on clinical history, can result in delays and misdiagnoses, culpable for over 1,200 deaths annually, 90% of which are considered preventable with timely intervention.
To address this issue, we developed Exhale-Dx™, a point-of-care breath test platform that provides a non-invasive, user-friendly solution for asthma diagnosis and monitoring. Exhale-Dx™ captures volatile organic compounds (VOCs) in exhaled breath, reflecting real-time metabolic and inflammatory markers of lung function. By analyzing these personalized breath signatures, clinicians and patients can detect exacerbations up to three days in advance, thus facilitating early and targeted interventions to reduce emergency care utilization. The system integrates capnographic waveforms, asthma control scores, and clinical lung function data, offering a comprehensive diagnostic profile.
Using Exhale-Dx™ data, we developed the Asthma Diagnostic Enhanced Neural Architecture (ADENA), an advanced deep neural network that leverages VOC biomarkers and lung function data to enhance diagnostic precision.
ADENA achieved exceptional performance, delivering 98.7% accuracy, an F1 score of 0.98, and a low mean squared error of 0.065. The deconvolution analysis further confirmed the model's ability to detect significant physiological differences between asthmatic and non-asthmatic profiles.
Our findings showed that VOC analysis combined with advanced neural networks could accurately distinguish asthmatic profiles, highlighting their potential for early, non-invasive interventions in respiratory health diagnostics.
哮喘带来了重大的诊断和治疗挑战,影响着数百万人,给医疗系统造成了沉重负担,尤其是在英国,约有540万人受其困扰。重度哮喘占总支出的50%以上,往往导致频繁发作和可预防的急诊入院。传统的诊断方法主要基于临床病史,可能导致诊断延误和误诊,每年造成1200多人死亡,其中90%被认为可通过及时干预预防。
为解决这一问题,我们开发了Exhale-Dx™,这是一种即时检测呼气测试平台,为哮喘诊断和监测提供了一种非侵入性、用户友好的解决方案。Exhale-Dx™捕捉呼出气体中的挥发性有机化合物(VOCs),反映肺功能的实时代谢和炎症标志物。通过分析这些个性化的呼吸特征,临床医生和患者可以提前三天检测到病情加重,从而促进早期和有针对性的干预,以减少急诊护理的使用。该系统整合了二氧化碳波形图、哮喘控制评分和临床肺功能数据,提供全面的诊断概况。
利用Exhale-Dx™数据,我们开发了哮喘诊断增强神经架构(ADENA),这是一种先进的深度神经网络,利用VOC生物标志物和肺功能数据提高诊断精度。
ADENA表现卓越,准确率达98.7%,F1分数为0.98,平均平方误差低至0.065。去卷积分析进一步证实了该模型检测哮喘和非哮喘特征之间显著生理差异的能力。
我们的研究结果表明,VOC分析与先进的神经网络相结合能够准确区分哮喘特征,突出了它们在呼吸健康诊断中进行早期非侵入性干预的潜力。