Suppr超能文献

基于多参数磁共振成像的模型用于预测微波消融术后乙型肝炎相关肝细胞癌的早期复发

Multi-parameter MRI-based model for the prediction of early recurrence of hepatitis B-associated hepatocellular carcinoma after microwave ablation.

作者信息

Zhang Ying, Yu Jing-Jing, Chen Wei, Liu Bo, Wei Xue-Fei, Wang Zhao-Hui, Li Xue, Gao Shuai, Wang Kai

机构信息

Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China.

School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.

出版信息

Front Cell Infect Microbiol. 2025 Aug 27;15:1638779. doi: 10.3389/fcimb.2025.1638779. eCollection 2025.

Abstract

OBJECTIVES

To establish and validate a multi-parameter model for the prediction of early recurrence in patients with hepatitis B-associated hepatocellular carcinoma (HBV-HCC) after microwave ablation.

METHODS

This study retrospectively reviewed the clinical features and preoperative magnetic resonance imaging (MRI) scans of 166 patients with HBV-HCC who underwent microwave ablation at two hospitals. The training cohort comprised 116 patients from the first hospital (n = 116; mean age, 56 years; 84 male patients), while 50 patients from the second hospital constituted the external validation cohort (n = 50; mean age, 60 years; 38 male patients). A transformer-based deep learning network was used to fuse images from multi-sequence MRI and predict recurrence within 1 year after microwave ablation. Additionally, a nomogram based on deep learning radiomics and clinical features was developed and externally validated in a validation group from a second hospital.

RESULTS

The combined model was better than the clinical model and MRI model in predicting early recurrence of hepatitis B-associated hepatocellular carcinoma within 1 year after microwave ablation. Nomograms based on joint models include aspartate aminotransferase, portal hypertension, and deep learning-based radiomics scores. The areas under curves of the models in the training group and the validation group were 0.868 (95% CI: 0.793-0.924) and 0.842 (95% CI: 0.711-0.930), respectively, indicating high prediction ability. The results of decision curve analysis showed that the combined model had good clinical application value and correction effect.

CONCLUSIONS

Our nomogram combined with clinical features and preoperative magnetic resonance imaging features effectively predicted early recurrence of hepatitis B-associated hepatocellular carcinoma within 1 year after microwave ablation.

摘要

目的

建立并验证一个用于预测乙型肝炎相关性肝细胞癌(HBV-HCC)患者微波消融术后早期复发的多参数模型。

方法

本研究回顾性分析了在两家医院接受微波消融的166例HBV-HCC患者的临床特征和术前磁共振成像(MRI)扫描结果。训练队列包括来自第一家医院的116例患者(n = 116;平均年龄56岁;男性患者84例),而来自第二家医院的50例患者构成外部验证队列(n = 50;平均年龄60岁;男性患者38例)。使用基于Transformer的深度学习网络融合多序列MRI图像,并预测微波消融术后1年内的复发情况。此外,开发了一个基于深度学习放射组学和临床特征的列线图,并在来自第二家医院的验证组中进行了外部验证。

结果

在预测微波消融术后1年内乙型肝炎相关性肝细胞癌的早期复发方面,联合模型优于临床模型和MRI模型。基于联合模型的列线图包括天冬氨酸转氨酶、门静脉高压和基于深度学习的放射组学评分。训练组和验证组模型的曲线下面积分别为0.868(95%CI:0.793-0.924)和0.842(95%CI:0.711-0.930),表明具有较高的预测能力。决策曲线分析结果显示联合模型具有良好的临床应用价值和校正效果。

结论

我们的列线图结合临床特征和术前磁共振成像特征有效地预测了微波消融术后1年内乙型肝炎相关性肝细胞癌的早期复发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验