Suppr超能文献

用于移动机器人应用的锌离子电池的缺陷工程MnO@泡沫镍电极

Defect-Engineered MnO@Ni Foam Electrode for Zinc-Ion Batteries Toward Mobile Robotics Applications.

作者信息

Li Shilin, Xie Dong, Zhou Taoyun, Zhao Qiaomei, Liu Muzhou, Li Xinyu

机构信息

School of Information, Hunan University of Humanities, Science and Technology, Loudi 417000, China.

College of Physics and Electronic Information Engineering, Guilin University of Technology, Guilin 541004, China.

出版信息

Nanomaterials (Basel). 2025 Aug 26;15(17):1312. doi: 10.3390/nano15171312.

Abstract

Aqueous zinc-ion batteries (AZIBs) have gained significant attention as promising candidates for next-generation energy storage systems, especially in mobile robotics, due to their inherent safety, environmental friendliness, and low cost. However, the practical application of AZIBs is often hindered by slow Zn diffusion and the poor structural stability of the cathode materials under high-rate or long-term operation. To address these challenges, a defect-engineered, binder-free MnO electrode, with a MnO loading of 1.35 mg·cm, is synthesized via in situ hydrothermal growth of ultrathin MnO nanosheets directly on a 3D conductive nickel foam scaffold, followed by reductive annealing to introduce abundant oxygen vacancies. These oxygen-rich defect sites significantly enhance Zn adsorption, improve charge transfer kinetics, and contribute to enhanced pseudocapacitive behavior, further improving overall electrochemical performance. The intimate contact between the MnO and Ni substrate ensures efficient electron transport and robust structural integrity during repeated cycling. With this synergistic architecture, the MnO@Ni electrode achieves a high specific capacity of 122.9 mAh·g at 1 A·g, demonstrating excellent cycling durability with 94.24% capacity retention after 800 cycles and nearly 99% coulombic efficiency. This study offers a scalable strategy for designing high-performance, structurally stable Zn-ion battery cathodes with improved rate capability, making it a promising candidate for energy-intensive mobile robotic and flexible electronic systems.

摘要

水系锌离子电池(AZIBs)因其固有的安全性、环境友好性和低成本,作为下一代储能系统的有前途的候选者而受到了广泛关注,特别是在移动机器人领域。然而,AZIBs的实际应用常常受到锌扩散缓慢以及阴极材料在高倍率或长期运行下结构稳定性差的阻碍。为了应对这些挑战,通过在三维导电泡沫镍支架上直接原位水热生长超薄MnO纳米片,然后进行还原退火以引入大量氧空位,合成了一种负载量为1.35 mg·cm的缺陷工程化、无粘结剂MnO电极。这些富氧缺陷位点显著增强了锌的吸附,改善了电荷转移动力学,并有助于增强赝电容行为,进一步提高了整体电化学性能。MnO与镍基底之间的紧密接触确保了在反复循环过程中的高效电子传输和稳健的结构完整性。凭借这种协同结构,MnO@Ni电极在1 A·g下实现了122.9 mAh·g的高比容量,在800次循环后容量保持率为94.24%,库仑效率接近99%,展示出优异的循环耐久性。这项研究为设计具有改进倍率性能的高性能、结构稳定的锌离子电池阴极提供了一种可扩展的策略,使其成为能量密集型移动机器人和柔性电子系统的有前途的候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29f0/12430161/3324faf85d45/nanomaterials-15-01312-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验