Castaño Fabian Andres, Laroze David, Duque Carlos Alberto
Scientific Instrumentation and Microelectronics Research Group-GICM, Physics Institute, Exact and Natural Sciences Faculty, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
Bioinstrumentation and Clinical Engineering Research Group-GIBIC, Bioengineering Department, Engineering Faculty, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
Nanomaterials (Basel). 2025 Sep 1;15(17):1345. doi: 10.3390/nano15171345.
This study presents a comprehensive numerical investigation of excitonic states in GaAs quantum wells embedded in AlxGa1-xAs barriers, incorporating the effects of donor and acceptor impurities, external electric and magnetic fields, and varying well widths. The electron and hole wavefunctions are computed by directly solving the Schrödinger equation using the finite element method in cylindrical coordinates, without assuming trial forms. To evaluate the exciton binding energy, the implementation and comparison of two independent approaches were performed: a numerical integration method based on elliptic function corrections, and a novel finite element electrostatic formulation using COMSOL Multiphysics v5.6. The latter computes the Coulomb interaction by solving Poisson's equation with the hole charge distribution and integrating the resulting potential over the electron density. Both methods agree within 1% and capture the spatial and field-induced modifications in excitonic properties. The results show that quantum confinement enhances binding in narrow wells, while donor impurities and electric fields reduce binding via spatial separation of carriers. Magnetic fields counteract this effect by providing radial confinement. The FEM-based electrostatic method demonstrates high spatial accuracy, computational efficiency, and flexibility for complex heterostructures, making it a promising tool for exciton modeling in low-dimensional systems.
本研究对嵌入AlxGa1-xAs势垒中的GaAs量子阱中的激子态进行了全面的数值研究,考虑了施主和受主杂质、外部电场和磁场以及阱宽度变化的影响。通过在柱坐标下使用有限元法直接求解薛定谔方程来计算电子和空穴波函数,无需假设试探形式。为了评估激子结合能,进行了两种独立方法的实现和比较:一种基于椭圆函数修正的数值积分方法,以及一种使用COMSOL Multiphysics v5.6的新型有限元静电公式。后者通过求解具有空穴电荷分布的泊松方程并在电子密度上对所得电势进行积分来计算库仑相互作用。两种方法的结果在1%以内吻合,并捕捉到了激子性质的空间和场致变化。结果表明,量子限制增强了窄阱中的结合,而施主杂质和电场通过载流子的空间分离降低了结合。磁场通过提供径向限制来抵消这种效应。基于有限元的静电方法在复杂异质结构中展示了高空间精度、计算效率和灵活性,使其成为低维系统中激子建模的有前途的工具。