Pertence Maria L B, Guedes Marina V, Barcelos Rosimeire C, Rugani Jeronimo N, Soares Rodrigo P, Cruz Joyce L V, de Sousa Alessandra M, do Monte-Neto Rubens L, Siman Livia G, Lage Anna C P, Agero Ubirajara
Department of Physics, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil.
Department of Chemistry, Federal University of São João del-Rei, Praça Dom Helvécio 74, Centro, São João del-Rei 36301-160, MG, Brazil.
Nanomaterials (Basel). 2025 Sep 5;15(17):1373. doi: 10.3390/nano15171373.
Cell membranes and the cytoskeleton play crucial roles in the regulation of cellular responses by mediating mechanical forces and physical stimuli from the microenvironment through their viscoelastic properties. Investigating these properties provides valuable insights into disease mechanisms and therapeutic strategies. Gold nanorods (GNRs), especially under irradiation, exhibit lethal effects against parasites through plasmonic photothermal conversion. In this study, we focus on evaluating the effects of non-irradiated GNRs on macrophage properties to better understand their intrinsic interactions with cells and support the development of future phototherapy applications. Here, defocusing microscopy (DM), a quantitative phase microscopy technique, was used to analyze membrane fluctuations in macrophages (M∅s) exposed to GNRs (average length of 43±8 nm and diameter of 20±4 nm) and infected with . By quantifying membrane-cytoskeleton fluctuation from defocused images, we extracted viscoelastic parameters, including bending modulus (kc) and viscosity (η), to characterize membrane behavior in detail. Our results show that infection increases both kc and η, while treatment at IC reduces infection and selectively increases kc without affecting η. In healthy macrophages, exposure to GNRs resulted in a reduction in both parameters, indicative of increased membrane fluidity and cytoskeletal rearrangement. These findings provide new insights into the biomechanical effects of GNRs on macrophages and may enlighten the design of future phototherapeutic approaches.
细胞膜和细胞骨架通过其粘弹性介导来自微环境的机械力和物理刺激,在细胞反应调节中发挥关键作用。研究这些特性有助于深入了解疾病机制和治疗策略。金纳米棒(GNRs),尤其是在照射下,通过等离子体光热转换对寄生虫表现出致死作用。在本研究中,我们专注于评估未照射的GNRs对巨噬细胞特性的影响,以更好地理解它们与细胞的内在相互作用,并支持未来光疗应用的发展。在这里,散焦显微镜(DM),一种定量相显微镜技术,被用于分析暴露于GNRs(平均长度为43±8nm,直径为20±4nm)并感染了[此处原文缺失感染物相关内容]的巨噬细胞(M∅s)中的膜波动。通过从散焦图像中量化膜 - 细胞骨架波动,我们提取了粘弹性参数,包括弯曲模量(kc)和粘度(η),以详细表征膜行为。我们的结果表明,感染会增加kc和η,而在半数抑制浓度(IC)下处理可减少感染并选择性地增加kc而不影响η。在健康巨噬细胞中,暴露于GNRs会导致这两个参数降低,表明膜流动性增加和细胞骨架重排。这些发现为GNRs对巨噬细胞的生物力学效应提供了新的见解,并可能为未来光疗方法的设计提供启示。